The transplantation of neural stem/progenitor cells (NPCs) holds great promises in regenerative neurology. The systemic delivery of NPCs has turned into effective, low invasive, and therapeutically very efficacious protocol to deliver stem cells in the brain and spinal cord of rodents and nonhuman primates affected by experimental chronic inflammatory damage of the central nervous system.
Neural stem/precursor cells (NPCs) are a promising stem cell source for transplantation approaches aiming at brain repair or restoration in regenerative neurology. This directive has arisen from the extensive evidence that brain repair is achieved after focal or systemic NPC transplantation in several preclinical models of neurological diseases.
These experimental data have identified the cell delivery route as one of the main hurdles of restorative stem cell therapies for brain diseases that requires urgent assessment. Intraparenchymal stem cell grafting represents a logical approach to those pathologies characterized by isolated and accessible brain lesions such as spinal cord injuries and Parkinson’s disease. Unfortunately, this principle is poorly applicable to conditions characterized by a multifocal, inflammatory and disseminated (both in time and space) nature, including multiple sclerosis (MS). As such, brain targeting by systemic NPC delivery has become a low invasive and therapeutically efficacious protocol to deliver cells to the brain and spinal cord of rodents and nonhuman primates affected by experimental chronic inflammatory damage of the central nervous system (CNS).
This alternative method of cell delivery relies on the NPC pathotropism, specifically their innate capacity to (i) sense the environment via functional cell adhesion molecules and inflammatory cytokine and chemokine receptors; (ii) cross the leaking anatomical barriers after intravenous (i.v.) or intracerebroventricular (i.c.v.) injection; (iii) accumulate at the level of multiple perivascular site(s) of inflammatory brain and spinal cord damage; and (i.v.) exert remarkable tissue trophic and immune regulatory effects onto different host target cells in vivo.
Here we describe the methods that we have developed for the i.v. and i.c.v. delivery of syngeneic NPCs in mice with experimental autoimmune encephalomyelitis (EAE), as model of chronic CNS inflammatory demyelination, and envisage the systemic stem cell delivery as a valuable technique for the selective targeting of the inflamed brain in regenerative neurology.
Strong evidence has arisen from in vivo studies attesting to the therapeutic efficacy of the transplantation of somatic neural stem/precursor cells (NPCs) in animal models of CNS disorders1-8. Nevertheless, a number of issues relating to the delivery of stem cells into the host require careful consideration before these experimental results can be translated into clinical applications. A particularly substantial hurdle towards the development of (nonhematopoietic) restorative stem cell therapies for multifocal, chronic inflammatory brain diseases is the identification of the ideal route of NPC injection. A firm understanding of the pathophysiology of the targeted disease (focal or multifocal; primary inflammatory or primary degenerative), and a cautious analysis of feasibility and risk issues associated with the delivery techniques are in identifying the optimal protocol for stem cell delivery.
While the focal (e.g. into the nervous system parenchyma) stem cell transplantation is a logical approach to the treatment of CNS diseases characterized by spatially confined areas of damage (e.g. Parkinson’s and Huntington’s disease, brain and spinal cord traumatic injuries, and stroke), the very same approach may prove to be practically not feasible in conditions such as MS, where a multifocal, chronic, and spatially disseminated CNS damage accumulates over time. In this latter case, targeting focal cell injections to individual lesions is also hindered by the limited capacity of transplanted NPCs to migrate over long distances within the CNS parenchyma, thus prompting the identification of alternative, more suitable methods of CNS targeting with less invasive NPC transplants.
Great promise emerged from the observations that NPCs target an intracranial tumor (e.g. glioma) in mice when injected intravascularly outside the CNS9. Following this seminal in vivo evidence of the stem cell pathotrophism10, extensive data have been accumulated pertaining to the feasibility and therapeutic efficacy of the systemic transplantation of NPCs in laboratory animals with experimental autoimmune encephalomyelitis (EAE), as a model of inflammatory CNS damage, via either intravenous (i.v.) or intracerebroventricular (i.c.v.) NPC injection1,2,5,6,8.. We have first shown that this is dependent on the capability of transplanted NPCs to target and enter the inflamed CNS, and to subsequently engage multiple intercellular communications programs within specific microenvironments in vivo11. In order to specifically target the CNS, NPCs are delivered directly into the cerebrospinal fluid (CSF) circulation by i.c.v. injection, or into the bloodstream via i.v. injection. Once entering either the bloodstream or CSF, transplanted NPCs actively interact with the blood brain (BBB) or blood cerebrospinal fluid (BCSFB) barriers and enter the CNS parenchyma. This interaction between the NPC graft and the BBB (or BCSFB) is regulated by specific set of NPC surface cell adhesion molecules (CAMs) and facilitated by the expression of high levels of CAM counter-ligands on activated endothelial/ependymal cells12-14. Examples of these CAMs include the receptor for hyaluronate, CD44, and the intercellular adhesion molecule (ICAM)-1 ligand very late antigen (VLA)-45,15,16 (that, in leukocytes, are responsible of the interaction with activated ependymal and endothelial cells), and to a much lower extent Lymphocyte function-associated antigen (LFA)-1 and P-selectin glycoprotein ligand (PSGL)-1. NPCs also express a wide range of chemokine receptors, including CCR1, CCR2, CCR5, CXCR3, and CXCR4 (but do not express CCR3 and CCR7), which are functionally active, both in vitro and in vivo5,16. Thus, systemically injected NPCs use these CAMs, along with G-protein coupled receptor (GPCRs), to accumulate at the level of the inflamed CNS. Conversely, NPCs injected systemically into healthy mice do not enter the CNS via vascular or cerebrospinal fluid space routes2. CNS inflammation, or endothelial/ependymal cell activation following systemic cytokine or lypopolisaccharide (LPS) injection as a model of chemically induced encephalitis, is therefore necessary for the accumulation of systemically injected NPCs into the brain and spinal cord2. Thus, successful targeting of the CNS with systemic NPC therapies is dependent on the identification of a disease specific window of Opportunity (WoO) in which the brain and spinal cord environment are conducive to the accumulation and transendothelial migration of NPCs. Such conditions generally arise in the context of acute and subacute inflammation17. Once having entered the CNS, transplanted undifferentiated NPCs have been shown to ameliorate the clinico-pathological features of mice as well as larger, nonhuman primates with EAE. This has been described to be dependent from minimal cell replacement2 and remarkable secretion of immune regulatory and neuroprotective paracrine factors within perivascular CNS2,5,6,18 vs non-CNS inflamed areas19,20 (e.g. lymph nodes) in response to the inflammatory cell signaling elicited by infiltrating immune cells5.
Herein we describe the key methodological aspects of the systemic injection of somatic NPCs into a mouse model of chronic EAE. More specifically, we define the protocols that we have established to (i) derive, expand and prepare for transplantation somatic NPCs from the subventricular zone (SVZ) of adult C57BL/6 mice; (ii) induce chronic EAE in such mice and (iii) perform therapeutically efficacious systemic (i.v. or i.c.v) NPC transplantation into EAE mice.
All procedures involving animals are performed according to the principles of laboratory animal care approved by the UK Home Office under the animals (scientific procedures) act 1986 (PPL No. 80/2457 to SP).
1. Derivation of Somatic Neural Stem/Progenitor Cells (NPCs) from the Subventricular Zone (SVZ) of the Brain of Adult Mice
2. Myelin Oligodendrocyte Glycoprotein (MOG)-induced Experimental Autoimmunity in C57Bl/6 Mice
3. Injection of Neural Stem/Progenitor Cells into the Tail Vein (i.v.)
4. Injection of Neural Stem/Progenitor Cells into the Cisterna Magna (i.c.v)
5. Tissue Processing
Comprehensive list of materials and reagents is shown in Table 2.
NPC derivation and characterization
SVZ dissections are performed on pools (n= 5-7 mice/pool) of 6-8 week old C57Bl/6 mice by means of mechanical and enzymatic dissociation (Figure 1A). After a few days of culturing in CGM, free-floating neurospheres begin forming (Figures 1A and 1B). Primary spheres are collected and mechanically passaged every 4-5 DIV. Upon passaging, numbers of live and dead cells are ascertained and cumulative cell numbers plotted to generate a growth curve (Figure 1C). This gives an indication of the propagation rate, thus providing an indirect parameter to evaluate the global stability of the NPC preparation. When proliferating as neurospheres, NPCs express markers of mitotic activity (phospho-histone H3, PHH3; 5 μg/ml) and of undifferentiated neural cells (e.g. Nestin) (Figure 2A). Undifferentiated NPCs that are to be therapeutically efficacious in EAE after transplantation must express cell surface adhesion molecules that include CD44 (5 μg/ml), the α4 subunit of the VLA-4 (10 μg/ml) (Figure 2F). When plated under appropriate differentiation conditions, NPCs express markers typical of the three neural lineages, (Figure 2B), such as the astroglial marker GFAP (Figure 2C), the neuronal marker microtubule associated protein-2 (MAP-2; 5 μg/ml) (Figure 2D) and the oligodendroglial markers O4 (5 μg/ml) and myelin basic protein (MBP; 10 μg/ml) (Figure 2E), thus confirming that NPCs are multipotent towards the three main neural lineages. To facilitate the identification of transplanted cells in vivo, NPCs are transduced with lentiviruses engineered to stably express reporter genes such as GFP. Transduced NPCs express GFP both as proliferating neurospheres (Figures 3A and 3C) as well as when differentiating in vitro upon growth factor withdrawal (Figure 3B). To verify the efficiency of transduction, the expression of GFP is analyzed by flow cytometry, starting as early as 3 passages after cell transduction (that is allowing enough time to have robust expression of the introduced transgene at the protein level). When applying third generation lentiviruses to NPCs in vitro, we consistently observe >90% of cells showing high levels of GFP over multiple independent experiments (Figure 3C), with neither overt toxicity nor changes in proliferation, when comparing the growth curves of wild type and lenti-GFP transduced NPCs (Figure 3D).
Chronic EAE induction
EAE is one of the best-characterized models of MS, since it recapitulates most of the pathological and clinical events of MS. Immunization of C57Bl/6 mice with MOG35-55 leads to the development of a chronic form of EAE. When approaching the disease onset (11.3±1.8 dpi) during the induction phase (preclinical), MOG immunized mice start losing weight (Figure 4A). At the beginning of the effector/invasion phase (peak clinical; 16.8±3.2 dpi) EAE mice reach the peak of the disease (score 3.5±0.7), and shortly after peaking they show a progressive and partial recovery that finally stabilizes during the chronic phase (stable clinical) from around 30 dpi onwards (score 2.8±0.9) (Figure 4B). Numerous studies, including some investigating EAE by either intravital microscopy23 or magnetic resonance imaging24, paired with in vivo tissue pathology, have identified in the peak of the effector/invasion phase (16-22 dpi) the ideal window of opportunity (WoO) in which to perform systemic experimental therapies with stem cells intended to enter the chronically inflamed EAE CNS and protect it from secondary damage.
NPC injection
Syngeneic NPCs injected systemically in EAE mice (Figure 6) are found almost exclusively in perivascular areas of CNS damage, both in the brain (Figure 5A) and spinal cord (Figures 5B-D), up to 45 days post transplantation (dpt), as described5. i.v. injected NPCs preferentially retain an immature, Nestin+ (Figure 5C) phenotype, while few NPCs moving out of the perivascular area express NeuN (Figure 5D). Of note, NPCs injected i.v. into healthy controls fail to enter the CNS via the vascular route (Figure 5E). After i.v. NPC injection, significant numbers of injected NPCs are found at the level of non-CNS organs such as the liver, gut, spleen, lung and kidney, but not the heart, as early as 10 dpt (Figure 5F). Non-CNS accumulating NPCs are completely cleared out of these peripheral organs by 30 dpt (Figure 5G).
Figure 1. Isolation of NPCs from the SVZ of adult mice and generation of stably expandable NPC lines. A, Schematic representation of the main critical steps of the generation of stably expandable, and preparation of injectable mouse NPCs. B, Neurospheres in vitro. C, NPCs cultured as neurospheres are passaged every 4-5 days. Numbers of live and dead cells are collected and cumulative cell numbers plotted to generate a growth curve. The scale bar in B is 200 μm. Data in C are mean cumulative number of cells ± SD (n= 3).
Figure 2. NPCs characterization. A, proliferating mouse neurospheres express the PHH3 core histone protein (green), and the type VI intermediate filament protein Nestin (red). B-E, After 6 DIV in differentiation conditions, NPCs are multipotent towards astroglial (GFAP, red in C), neuronal (MAP-2, green in D) and oligodendroglial (O4, green in E; and MBP, red in E) lineages. Quantification of GFAP-, MAP-2-, and O4-expressing cells at 6 DIV after NPC differentiation in vitro are showed in B. Data in B are as mean % ± SD (n= 3). The scale bars in C-E are 50 μm. F, Flow cytometry analysis of the expression of the main cell surface adhesion molecules regulating leukocyte extravasation in mouse neurospheres. Figure 2F is reproduced from Pluchino et al.2
Figure 3. Transduction of NPCs with lentiviruses expressing reporter genes (e.g. GFP. A and B, Phase contrast images of neurospheres (A) and differentiating NPCs (B) that have been transduced with a 3rd generation lenti-GFP vector. Flow cytometry analysis of the NPCs in A. C, Wild type (not transduced) and lenti-GFP transduced NPCs cultured as neurospheres are passaged every 4-5 days. Numbers of live and dead cells are collected and cumulative cell numbers plotted to generate a growth curve. The scale bar in A and B is 200 μm. Data in C are mean cumulative number of cells ± SD (n=3).
Figure 4. Functional characterization of chronic EAE. A, Daily weight monitoring in MOG- and CFA-immunized C57Bl/6 mice over a total follow up of 40 dpi. B, Daily EAE score monitoring in MOG- and CFA-immunized C57Bl/6 mice over a total follow up of 40 dpi. Data are expressed as mean numbers ± SD (n=10 mice/group).
Figure 5. Systemically injected NPCs migrate in the parenchyma of EAE mice. A-E, X-gal staining of vibratome-cut (70 µm) brain (A) and spinal cord (B) tissue sections from EAE mice injected i.v. with syngenic NPCs, showing transplanted β-gal+ cells (blue cells) persisting within perivascular CNS areas up to the end of the clinical follow up (106 dpi). C, β-gal+ i.v.-injected NPCs (blue) persisting within perivascular CNS areas, retain a Nestin+ (brown) phenotype. D, Few migrating NPCs express NeuN+ (brown) as long as they move out of the perivascular area. E, X-gal staining in a representative spinal cord section from a sham-treated EAE mouse. Scale bars, 20 μm. F-G, Analysis of tissues other than the CNS shows that i.c.- or i.v.-injected NPCs (blue cells) reach virtually all the organs (e.g. lung, liver, spleen, heart, gut, kidney) within 10 dpt (F), but are cleared from the same organs by 30 dpt (G). Figures 5A-E is reproduced from reference 5, while Figures 5F-G is reproduced from Pluchino et al.2
Figure 6. Schematic representation of the protocol for systemic injection of NPCs in mice with EAE. Main critical steps of the systemic injection of NPCs in mice with EAE: from the preparation of injectable CAM expressing single cell dissociated NPCs the cell culture room (A), to the injection into the tail vein of EAE mice at the peak of the effector/invasion disease phase (B), towards the in vivo detection of the injected NPCs that have targeted the CNS (C), to the in vivo tissue pathological studies allowing the study of the mechanisms of therapeutic plasticity of injected NPCs (D). In D, green cells in are oligodendrocytes, dark blue cells are axons, light blue cells are transplanted NPCs, orange cells are astrocytes, and red cells are endothelial cells.
Score | Locomotor Responses |
0 | Normal mouse. No overt signs of disease |
1 | Limp tail: complete flaccidity of the tail, and absence of curling at the tip of the tail when a mouse is picked up |
1.5 | Hind limb weakness: the mouse shows occasional and brief trippings when walking on a waddling gait |
2 | Limp tail and hind limb weakness: when placed on its back, the mouse cannot turn to its normal position |
2.5 | Partial hind limb paralysis: the mouse can no longer use hind limbs to maintain rump posture or walk but can still move one or both hindlimbs to some extent, forelimbs remain unaffected |
3 | Complete hind limb paralysis: total loss of movement in hindlimbs. The mouse drags itself only on its forelimbs, which remain unaffected. Mice at this stage are given food on the cage floor, long sipper tubes, and daily subcutaneous injection of hydrating solutions to prevent dehydration. If mice develop sores or skin lesions that do not recover with treatment, they will be killed humanely |
3.5 | Forelimb weakness: when place on a vertical grid, the mouse is not able to climb and slowly falls |
4 | Moribund state |
5 | Mouse found dead or culled according to humane endpoints |
Table 1. Five stage scale of clinical signs and ascending paralysis in EAE mice.
Somatic stem cell based therapies are emerging as one of the most promising strategies for treating chronic inflammatory CNS disorders such as MS211. While the mechanisms sustaining their therapeutic effects still need to be completely elucidated, the significant impact of NPC transplantation in different experimental models of neurodegenerative diseases has given rise to the somewhat provocative belief that stem cells may soon be applied into human studies. However, before envisaging any potential human applications of such innovative therapies we need to face some key issues and address some unanswered questions, such as the identification of the ideal stem cell source for transplantation (autologous vs allogeneic, pluripotent vs multipotent) and the best route of administration.
Neurodegenerative diseases differ in their pathophysiologies, with some being spatially confined (e.g. spinal cord injury, stroke) while other being characterized by a spatial temporal dissemination (e.g. MS). It derives that the focal injection of (stem) cells may be a suitable treatment for the former, while it may be inadequate or simply unfeasible for the latter, where the presence of multiple sites of brain damage represents an additional challenge to be overcome.
Consistent evidence has shown that intravenous delivery may represent a valid (and low invasive) protocol for cell administration, supported by the intrinsic ability of stem cells to sense the environment and specifically home towards the site(s) of damage. However, translation of systemic NPC therapies into clinics is still hindered by a few limitations, such as the possible accumulation of transplanted cells in peripheral non-CNS organs (e.g. lungs, spleen, lymph nodes, and kidneys) that may or may not be sites of local inflammatory responses in vivo. While this nonspecific accumulation of injected NPCs out of the target CNS is quickly cleared in mice with chronic EAE2, there is evidence of long term NPC persistence (or in some cases exclusive targeting) at the level of the secondary lymphoid organs (e.g. lymph nodes and spleen) after systemic injection in mice with relapsing EAE519,20. The fact that significant numbers of transplanted NPCs recirculate toward non-CNS organs creates a dilution effect, inevitably reducing the absolute number of NPCs in the CNS. Interestingly, systemically injected NPCs are therapeutically efficacious (e.g. via immune regulatory actions) even when accumulating exclusively out of the CNS19,20. And the overall therapeutic effects of injected NPCs targeting the CNS only5 or the lymph nodes only19 are comparable. This may in part due to an intrinsic plasticity of the cells, which respond differently to the molecular components of the surrounding microenvironment. Notably, if on one hand transplanted NPCs may feel the presence of inflammatory cytokines and exert their therapeutic effect through immune modulatory mechanisms16, on the other hand they may come in contact with hostile microenvironments ultimately leading to the formation of tumors25,26. For these reasons, the preferred option is at present to concentrate injected NPCs in the CNS. As such, the intrathecal administration (via a lumbar or cisternal route) is still the most accepted prospective route of administration in clinical trials. However, the multifocality and pathological heterogeneity of MS lesions may limit the efficacy of such an approach.
Here we describe an efficient protocol to isolate, maintain and characterize mouse neural progenitors from the adult SVZ and successively, how to systemically (both i.v and i.c.v) inject NPCs in mice affected by chronic EAE, one of the most studied models of MS. Even though relatively simple and straightforward, these protocols present some critical steps that need to be taken into consideration. At first, it is mandatory to obtain a stably expandable and healthy cell preparation. As described throughout the protocol, the stability of the cells may be indirectly inferred by looking at their growth rate. Ideally, neurospheres should reach a diameter of 150-200 μm every 4-5 DIV and the percentage of cell death upon passages must be very low (less than 10%). Also, neurospheres must present a compact and regular round shape at the microscope. The infection with lentiviruses may interfere with the survival and stability of the cells. To obtain an optimal infection, it is mandatory to obtain a titration of the virus of interest sufficient to obtain 3 x 106 T.U./ml. Indeed, while on one hand a low amount of virus would lead to a small percentage of infected cells, on the other hand the use of a high amount would likely lead to a toxicity effect (strongly dependent on the gene to be infected). NPCs can be infected multiple times with integrating viruses, should the outcome of the first transduction lead to low percentage of transgene positive viable cells. It is always a good practice to have intra experimental comparison of stability and viability parameters with wild type, nontransduced, controls NPCs. As for the induction of chronic EAE, the most problematic part is represented by the preparation of the emulsion. As described, glassware and ice must be use at all times. The preparation of the emulsion takes 30-45 min, and it can be considered ready to be injected only when it does not disperse when dropped on water. If the emulsion dissipates in water, this means it is not yet ready and requires further blending.
Good accuracy during the i.v. injection procedure at the time of cell administration is critical. First, it is extremely important to have a single cell suspension, as the injection of aggregated cells may obstruct the veins of the injected mouse and lead to its immediate death. To assure the correct positioning of the needle into the vein, it is good practice to aspirate with the syringe few microliters of blood. In the case of no blood coming into the syringe, the operator should slowly move the needle backward or forward until the correct location is found. Only at this point can the cell suspension be slowly injected. Importantly, the operator should typically not be required to apply any pressure on the syringe since the liquid should easily flow in the vein. An improper injection would inevitably result in a subcutaneous swelling corresponding to the injection site.
It is worth noting that in the very near future systemically injected NPCs2,27, genetically modified or not, may themselves represent a therapeutic option, as well as providing an important tool for delivering immune modulatory and/or neuroprotective drugs and pro remyelinating agents directly into the CNS28. Therefore, while some limitations related to the systemic delivery of NPCs do exist, both i.v. and i.c.v. routes may ultimately represent valid alternative therapeutic approach in those diseases where the focal injection of cells may not constitute the gold standard protocol of treatment.
The authors have nothing to disclose.
The authors thank Jayden Smith for critically reviewing and proof editing the manuscript. This work has received support from the National Multiple Sclerosis Society (NMSS, partial grants RG-4001-A1), the Italian Multiple Sclerosis Association (AISM, grant 2010/R/31), the Italian Ministry of Health (GR08-7), Wings for Life, Banca Agricola Popolare di Ragusa (BAPR), the European Research Council (ERC) under the ERC- 2010-StG Grant agreement no 260511-SEM_SEM and the European Community (EC) 7th Framework Program (FP7/2007-2013) under Grant Agreement n*deg; 280772- iONE.
Cell culture | |||
EBSS | Sigma | E2888 | |
L-Cystein | SIGMA-ALDRICH CO LTD | C7352 | |
Papain | WORTHINGTON | 30H11965 | |
EDTA | Fisher scientific | D/0700/50 | |
Mouse NeuroCult basal medium | Stem Cell technologies | 05700 | |
NeuroCult proliferation supplements | Stem Cell technologies | 05701 | |
Heparin | Sigma | H3393 | |
Basic fibroblast growth factor | Peprotech | 100-18B-1000 | |
Epidermal growth factor | Peprotech | AF-100-15-1000 | |
Pen/Strep | Invitrogen | 1514012 | |
Matrigel (coating solution) | BD biosciences | 354230 | |
NeuroCult® Differentiation Kit (Mouse) | Stem cell technologies | 05704 | |
Accumax | eBioscience | 00-4666-56 | |
Dulbecco's PBS (DPBS) (10x) without Ca& Mg | PAA LABORATORIES LTD | H15-011 | |
Myco trace | PAA LABORATORIES LTD | Q052-020 | |
Dimethyl sulfoxide (DMSO) | SIGMA | D2650 | |
immunofluorescence | |||
Normal goat serum | PAA LABORATORIES LTD | B11-035 | |
Polyethylene glycol p-(1,1,3,3-tetramethylbutyl)-phenyl ether | SIGMA-ALDRICH CO LTD | T8787 | |
Mouse anti Nestin | Abcam | ab11306 | |
Rabbit anti GFAP | DAKO | 203344 | |
Mouse anti Histone H3 (phospho S10) | Abcam | ab14955 | |
Rabbit anti MAP-2 | Abcam | ab32454 | |
Rat anti MBP | AbD SEROTEC | MCA409S | |
Anti-O4 Antibody, clone 81 | MAB345 | Millipore | MAB345 | |
DAPI | Invitrogen | D1306 | |
Mounting solution | DAKO | S3023 | |
EAE | |||
Freund's Adjuvant Incomplete | SIGMA-ALDRICH CO LTD | F5506 | |
Mycobacterium tuberculosis | DIFCO | H37Ra | |
MOG(35–55) | Espikem | ||
Pertussis toxin | List Biological Laboratories | 181 | |
Tissue processing | |||
Iris scissor straight | Fine Sciences Tolls | 14060-09 | |
Blunt/bended forceps | Fine Sciences Tolls | 11080-02 | |
Brain slicer | Zivic instruments | BSMAS005-1 | |
Surgical blades | Swann-Morton | 324 | |
P200, P1000 pipettes | |||
Ketamine (Vetalar) | Boehringer Ingelheim | 01LC0030 | |
Xylazine (Rompun) | Bayer | 32371 | |
Stereotaxic frame | KOPF | Model 900 | |
Hamilton syringe | Hamilton | 7762-04 | |
Paraformaldehyde (PFA) | SIGMA | 158127 | |
VECTASTAIN Elite ABC Kit | vector laboratories | PK-6100 |