Single-pulse transcranial magnetic stimulation over the primary motor cortex, neuronavigation, and registration of electromyographic activity of hand muscles were used in this study to explore corticospinal excitability while participants were observing action sequences.
This study used the transcranial magnetic stimulation/motor evoked potential (TMS/MEP) technique to pinpoint when the automatic tendency to mirror someone else’s action becomes anticipatory simulation of a complementary act. TMS was delivered to the left primary motor cortex corresponding to the hand to induce the highest level of MEP activity from the abductor digiti minimi (ADM; the muscle serving little finger abduction) as well as the first dorsal interosseus (FDI; the muscle serving index finger flexion/extension) muscles. A neuronavigation system was used to maintain the position of the TMS coil, and electromyographic (EMG) activity was recorded from the right ADM and FDI muscles. Producing original data with regard to motor resonance, the combined TMS/MEP technique has taken research on the perception-action coupling mechanism a step further. Specifically, it has answered the questions of how and when observing another person’s actions produces motor facilitation in an onlooker’s corresponding muscles and in what way corticospinal excitability is modulated in social contexts.
Over the past ten years neuroscience research has largely modified the traditional view of the motor system. A considerable amount of data suggests that observing someone else's body movements activates motor representations in the onlooker's brain (e.g.1-3). These studies showed that the motor cortex of an observer dynamically replicates actions being observed as if those were being executed by the onlooker himself. Transcranial magnetic stimulation (TMS) is useful to assess corticospinal (CS) excitability with a relatively high temporal resolution in order to track excitability changes while someone observes someone else performing an action.
The fundamental principle of TMS functioning is that a changing primary electric current in a stimulation coil produces a changing magnetic field, which in turn induces a secondary flow of electric current in nearby conductors- in this case, cortical tissue- as prescribed by Faraday's law4. The brain is an inhomogeneous conductor consisting of white matter, gray matter and cerebral spinal fluid with conductivities 0.48, 0.7, and 1.79 S/m, respectively5. Analysis shows that for the purposes of magnetic stimulation, the brain can be treated as a homogenous conductor5. Depolarization of neurons is produced by virtue of the induced current. At the heart of the process is the transfer of charge across the nerve membrane commensurate to raise its intracellular potential about 30-40 mV. At the point that positive ions are driven into a nerve cell, its intracellular potential will rise, and if the rise is sufficient, an action potential results5. Priori and colleagues6 were the first to show that a weak current could modulate the excitability of the human motor cortex, as measured by the amplitude of the motor-evoked potential (MEP) from TMS. Much of the work involving magnetic stimulation of the human motor cortex has, indeed, focused on EMG responses in intrinsic hand muscles7. In 2004 Uozomi and colleagues8 uncovered that spTMS over area 44 could easily interrupt target-oriented hand movements and produced motor evoked potential from hand muscles. Human area 44 has facilitatory and inhibitory effects over both tonic and phasic finger movements9-10, and has direct fast-conducting corticospinal projections.
The first evidence that CS excitability is modulated not only during voluntary movements but also during action observation was produced by Fadiga and colleagues in 19953. TMS was applied to the hand areas of the primary motor cortices (M1) and MEPs were recorded from contralateral hand muscles while a volunteer was instructed to watch transitive and intransitive movements (the former are goal directed, the latter are not). The amplitude of MEPs recorded from opponens pollicis (OP) and FDI muscles was found to be increased during observation of grasping actions with respect to that registered in control conditions. The question thus arose: are the muscles that are facilitated during action observation the same ones utilized during action execution? EMG responses in hand muscles recorded while an object was being grasped and during arm lifting movements were all found to exactly replicate the pattern of MEPs elicited by TMS during action observation. Some research groups have been able to repeat these same experiments and have designed others11-16.
During action observation, the observer's motor system in practice "resonates" with the observed movements and simulates under threshold those actions in a strictly congruent fashion. As the muscles involved in the observer are the same as those being used by the person carrying out the action, they are temporally coupled with the dynamics of the observed action. In 2001 Gangitano and colleagues demonstrated that the execution-observation matching system is linked to the observed action even in terms of its temporal coding17. MEP amplitudes become larger as the finger aperture increases and smaller during the closure phase. Clark et al.18 set out to assess the specificity of corticospinal (CS) facilitation while participants watched, were asked to imagine, or observed actions that they were told they would later have to carry out. Those investigators reported that there did not seem to be any statistically significant differences in these three conditions.
There are at least two hypotheses explaining MEP facilitation induced by action observation. According to the first one, the enhancement of M1 excitability is produced through excitatory cortico-cortical connections. According to the second, TMS reveals, through CS descending volleys, a facilitation of motoneurons (MNs). Modulations in MEP amplitudes caused by variations in M1 or MNs excitability cannot be distinguished. As Baldissera et al.19 wanted to investigate spinal cord excitability linked to MEP facilitation, they decided to measure the amplitude of the Hoffmann reflex (evoked by stimulating the afferent fibers in peripheral nerves) in finger flexor forearm muscles while volunteers observed goal-directed hand actions. They reported that while modulation of cortical excitability closely imitated the movements being observed as if these were being performed by the observer him/herself, spinal cord excitability appeared to be reciprocally modulated. Those investigators considered the effect an expression of a mechanism blocking the overt execution of observed actions. Modulation of motor potentials evoked by TMS during action observation3,20,21 appears to be specific, then, for the muscles involved in executing an action3 and follows, in an anticipatory fashion22, the same temporal activation pattern17,23. Along these lines, Urgesi and colleagues24,25 recently found that observation of start and middle phases of grasp actions engendered a significantly higher motor facilitation than observing their final postures. Motor facilitation was maximal for the snapshots evoking ongoing but incomplete actions. The results provide compelling evidence that the frontal component of the observation-execution matching system plays an important role in the predictive coding of others' motor behaviors.
It is, however, undeniable that successful interaction in the real world often requires complementary rather than emulative actions26 and that imitation is not always an effective or appropriate response to action observation. In those cases in which, for example, someone hands someone else a mug being held by its handle, we all know that the receiver will, without thinking, grab the mug with a whole hand gesture (the only one that would be appropriate in this situation). Little is known regarding how the inflexible tendency to match observed actions onto our motor system can be reconciled with the request to prepare nonidentical responses. In this respect, some researchers showed that the automatic effects of mirroring can be abolished following incompatible training: mirror and counter-mirror responses seem to follow the same timecourse27,28. Interestingly, in contrast to previous studies, MEPs induced by spTMS were recently used to assess spontaneous corticospinal activation while video-clips evoking emulative or nonidentical complementary gestures were being simply observed29,30. Results showed a natural switch from an emulative to a context-related action in corticospinal activity. A matching mechanism at the beginning of an action sequence turned into a complementary one if a request for a reciprocal action became evident.
Capitalizing on those results, the present study was designed to specifically determine, using the combined TMS/MEP technique, at what stage the spontaneous shift from emulation to reciprocity takes places when action observation evokes a complementary response. MEPs were then recorded at five different moments of the sequence from the FDI and ADM hand muscles. We hypothesize that MEPs recorded at the time the observer initially perceive a whole-hand grasp might elicit both ADM and FDI muscles facilitation because such muscles are usually recruited for such a grip. Conversely, when the observed gesture elicit a nonidentical complementary gesture (i.e. a PG) in the observer, only MEPs recorded from the FDI muscle should reveal a pronounced increase in activation. This is because PG does not imply the recruitment of the ADM muscle. We also predict that when the observed action does not convey any social meaning, simple symmetrical facilitation effects should emerge during all the action sequence.
1. Preparation of the Video Stimuli
2. Instrument Preparation
3. Participant Recruitment
4. TMS Stimulation and MEP Recording
5. Debriefing
6. Data Analysis
The efficacy of the TMS/MEP technique in assessing CS excitability during action observation depends upon locating the optimal scalp position for both the ADM and FDI muscles. Surface electrodes in belly-tendon montages should be applied and must conform to regular single-pulse stimulation patterns.
In this study, results have been obtained on a sample of thirty participants (22 females and 8 males: age = 21±5 years), all right handed according to a Standard Handedness Inventory31 and with normal or corrected-to-normal vision. None had any contraindication to TMS32,33 nor experienced discomfort during the experiment. The experimental procedures outlined here were granted ethical approval (Ethics Committee of the University of Padova) in accordance with the principles of the 1964 Declaration of Helsinki and all of the participants gave written informed consent.
According to our hypothesis, the MEPs recorded when the need for a complementary action becomes apparent should be modulated depending on the object placed in the foreground. When the 4th coffee cup evokes a tendency to perform a PG, only the FDI muscle should be activated. But when the model's action towards the 4th mug evokes a WHG, then both ADM and FDI muscles should be found activated. As FDI was recruited for both the PG and WHG, no MEP modulation was expected in terms of the type of grasp observed. MEPs being recorded from the observer's hand at the time the model initially grasps the thermos should, moreover, show, for example, motor facilitation in both ADM and FDI muscles, that is the muscles classically involved in a WHG. On the contrary, observing the model as her hand moves towards the fourth coffee cup should produce only FDI muscle facilitation as only that muscle (and not the ADM) is involved in a PG.
Observing a two-step action sequence implicitly containing a request for a complementary movement caused a switch from emulation to responsiveness in the onlooker's corticospinal activity and indicated, in the trials carried out, exactly when the changeover took place (Figure 2).
A variation heralding a reciprocal action took place in the observer's ADM MEPs the moment the model's wrist started to move towards the fourth mug (the social condition). Inversely, a variation heralding an emulative action took place in the observer's MEPs the moment the model's wrist started to return to its original position (the nonsocial condition, see Figure 3). FDI, as expected, was actively involved in all observed movements and simulated actions (see Figures 4 and 5). It would seem, then, from these results that humans can code an action as social or nonsocial even before it becomes explicit. It can be concluded that observers are attuned to advance movement information provided by subtle kinematic cues and that they are able to use it to anticipate a future course of action. During the experimental sessions described here the participants showed that they were capable of discriminating between actions prompted by social or nonsocial conditions simply by observing nearly imperceptible kinematic cues. During the experiments carried out, modulation of corticospinal excitability was a reliable, indirect measure of the capacity to activate appropriate motor programs in an interactive context.
Figure 1. Here the sequence of events taking place during each trial is schematized. The continuous oblique line represents the entire video-clip presentation. Horizontal lines denote the time points when single TMS pulses were delivered: at T1 (when the model's hand makes contact with the cup/mug), T2 (when the model finishes pouring sugar/coffee), T3 (when the model begins to move her hand away from the third cup/mug), T4 (when the model's hand starts to return to its original position or to move towards the fourth cup/mug – considered the onset of a cue for a complementary gesture), and T5 (when the model's arm is clearly returning to its original position or moving towards the fourth cup/mug – considered the end of the cue for a complementary gesture). The frames not shown in the figure (the time between the model's action of making contact with the sugar spoon/thermos and the action of pouring sugar/coffee was completed) are represented by double oblique bars.
Figure 2. The frames extracted from the video-clips filmed for this study accompany the lines of the graph which represent the means of the ADM normalized MEP amplitudes. Social whole-hand grasp movements requiring a PG and social precision grip movements requiring a WHG are illustrated (black and white, respectively). Bars represent the standard error of means.
Figure 3. The frames extracted from the video-clips filmed for this study accompany the lines of the graph which represent the means of the ADM normalized MEP amplitudes. Nonsocial whole-hand grasp movements requiring a PG and nonsocial precision grip movements requiring a WHG are illustrated (black and white, respectively). Bars represent the standard error of means.
Figure 4. The frames extracted from the video-clips filmed for this study accompany the lines of the graph which represent the means of the FDI normalized MEP amplitudes. Social whole-hand grasp movements requiring a PG and social precision grip movements requiring a WHG are illustrated (black and white, respectively). Bars represent the standard error of means.
Figure 5. The frames extracted from the video-clips filmed for this study accompany the lines of the graph which represent the means of the FDI normalized MEP amplitudes. Nonsocial whole-hand grasp movements requiring a PG and nonsocial precision grip movements requiring a WHG are illustrated (black and white, respectively). Bars represent the standard error of means.
The most critical steps in measuring modulation in CS excitability in humans during action observation are: 1) designing/filming video clips that induce an action tendency in an observer anticipating both emulative and complementary responses; 2) determining the kinematic events characterizing the various phases of the model's actions to time-lock TMS stimulation accordingly; 3) identifying the optimal scalp position for each hand muscle and maintaining consistent positioning throughout the experiment; 4) properly registering EMG activity from the stimulated muscles.
Previous studies utilizing the TMS/MEP technique have shown that corticospinal activation resulting from action observation does not invariably possess an imitative bias but, depending on contextual factors, can also prime motor activation for complementary actions29,30. Single-pulse TMS studies have demonstrated that observing a two-step action sequence in which a complementary request is embedded prompts a switch from emulation to responsiveness in the participants' corticospinal activity. This study goes a step further by showing when exactly the switch takes place and demonstrates that humans are able to anticipate the social intent of an action by observing precocious kinematic cues signaling the need/request for a complementary response. Advance movement information is, indeed, sufficient for an observer to make inferences about the intention behind it. Mechanisms underlying action observation seem then to be malleable, prompt, and sensitive to complex requests embedded in social contexts. Future research will go on to analyze if processing is serial or parallel. Neuroimaging studies employing paradigms such as the one used here will be able to further clarify this process, delineating the cortical networks underlying the ability to shift from emulation to reciprocity.
These results will also point the way for future applications of TMS/EMG techniques to study CS excitability and motor system plasticity. Numerous studies have already shown that TMS measurements of motor cortex function are safe, reliable, and potentially useful in the clinical setting40.46. Longitudinal comparisons of MEP amplitude could, in fact, provide a direct assessment of motor cortical plasticity effects.
Recent studies have reported that action observation has a positive effect on post-stroke rehabilitation of motor deficits and can be beneficially utilized to reactivate motor areas in individuals needing to rehabilitate motor control47. A complementary action observation therapy strategy could, thus, be developed which makes use of observation of complementary gestures to reactivate impaired motor skills. If, as it seems, motor behavior is the result of both internal and external factors, action observation should be included in training protocols aiming to rehabilitate this type of patient. Observation of everyday actions together with physical practice could pave the way to a more efficacious rehabilitation strategy. Until now, moreover, only indirect measures such as functional or subjective scales have been used to assess clinical improvement; in the future TMS/EMG assessment can be utilized to measure functional improvement in these patients.
In conclusion, this study delineates how and when observing another person's actions produces motor facilitation in an onlooker's corresponding muscles and in what way corticospinal excitability is modulated in social contexts. It also confirms that motor potentials evoked by TMS are safe, reliable indicators of CS excitability and modulation during action observation.
The authors have nothing to disclose.
Luisa Sartori was supported by a grant from Università degli Studi di Padova, Bando Giovani Studiosi 2011, L. n.240/2010.
Transcranial Magnetic Stimulator | Magstim |
BrainAmp MR system for EMG acquisition | Brain Products |
Softaxic Optic system for stereotaxic neuronavigation | E.M.S. |