A method for RNA interference (RNAi) by injection of dsRNA into unfed ticks is described. RNAi is the most widely used gene-silencing technique in ticks where the use of other methods of genetic manipulation has been limited.
Ticks are obligate hematophagous ectoparasites of wild and domestic animals and humans, and are considered to be second worldwide to mosquitoes as vectors of human diseases1 and the most important vectors affecting cattle industry worldwide2. Ticks are classified in the subclass Acari, order Parasitiformes, suborder Ixodida and are distributed worldwide from Arctic to tropical regions3. Despite efforts to control tick infestations, these ectoparasites remain a serious problem for human and animal health4,5.
RNA interference (RNAi)6 is a nucleic acid-based reverse genetic approach that involves disruption of gene expression in order to determine gene function or its effect on a metabolic pathway. Small interfering RNAs (siRNAs) are the effector molecules of the RNAi pathway that is initiated by double-stranded RNA (dsRNA) and results in a potent sequence-specific degradation of cytoplasmic mRNAs containing the same sequence as the dsRNA trigger7-9. Post-transcriptional gene silencing mechanisms initiated by dsRNA have been discovered in all eukaryotes studied thus far, and RNAi has been rapidly developed in a variety of organisms as a tool for functional genomics studies and other applications10.
RNAi has become the most widely used gene-silencing technique in ticks and other organisms where alternative approaches for genetic manipulation are not available or are unreliable5,11. The genetic characterization of ticks has been limited until the recent application of RNAi12,13. In the short time that RNAi has been available, it has proved to be a valuable tool for studying tick gene function, the characterization of the tick-pathogen interface and the screening and characterization of tick protective antigens14. Herein, a method for RNAi through injection of dsRNA into unfed ticks is described. It is likely that the knowledge gained from this experimental approach will contribute markedly to the understanding of basic biological systems and the development of vaccines to control tick infestations and prevent transmission of tick-borne pathogens15-19.
1. Generation of dsRNA.
2. Injection of Ticks with dsRNA.
2.1. Preparation of ticks for injection.
2.2. Tick injection team.
The RNAi team consists of three people: (1) one person who positions each tick on double sticky tape affixed to a sheet of red dental wax, (2) one person who injects the ticks and (3) one person who monitors the ticks after injection, breathes CO2 on the ticks to activate them and counts the living ticks into cups labeled with the experimental group number. All team members must wear disposable gloves.
2.3. Placement of ticks for injection.
2.4. Injection of ticks.
2.5. Treatment of ticks after injection.
2.6. Tick holding.
2.7. Analysis of tick phenotype after RNAi.
3. Analysis to Confirm Gene Silencing by RT-PCR.
4. Representative Results:
The protocol described herein has been used in our laboratory for RNAi in many different ixodid tick species (Table 1). The amount of dsRNA injected into the ticks varies with the size of the tick; larger tick species can accommodate a larger volume. Negative control ticks should be injected with an unrelated dsRNA. Several dsRNAs such as subolesin14-19,22-25,27-32,34 and beta-actin20,21 could be used as positive controls. Note that it is important to wash the syringe between treatments to avoid mixing dsRNA solutions. If the protocol is done correctly, less than 5% mortality should be obtained from the injection procedure after 24 hours. A typical phenotype after gene knockdown in ticks is shown in Figure 3 with a panel of ticks injected with pools of dsRNA in order to screen for tick protective antigens.
Tick species | dsRNA injected | Referanslar |
Ixodes scapularis | cDNA library, subolesin, actin, nucleotidase, NF-kB, akirin | 21, 22, 29, 30 |
Dermacentor variabilis | subolesin, GST, ubiquitin, vATPase, selenoproteins M and W2a, hematopoietic stem/progenitor cells protein-like, actin Proteasome 26S subunit, ferritin1, varisin, akirin | 15, 19, 22, 24, 26, 30-32 |
Dermacentor marginatus | subolesin | 22 |
Amblyomma americanum | cDNA library, subolesin, akirin | 17, 22, 30 |
Amblyomma hebraeum | subolesin, voraxin | 28 |
Rhipicephalus sanguineus | Rs86, subolesin | 22, 23 |
Rhipicephalus microplus | GST, ubiquitin, selenoprotein, Bm86, Bm91, subolesin, GI, GIII, EF1a, flagelliform silk protein, von Willebrand factor |
16, 18, 25, 27 |
Rhipicephalus annulatus | ubiquitin, subolesin, EF1a, GIII | 16 |
Table 1.Tick species in which the RNAi protocol has been used.
Figure 1. Placement of ticks, ventral side up, on double sticky tape adhered to a sheet of red dental wax. The ticks are placed in groups of 5, after which a small strip of masking tape is placed over the mouthparts in order to further secure the ticks while allowing the injector to observe the body of the tick during injection.
Figure 2. The injection procedure includes (a) piercing the lower right quadrant of the tick exoskeleton with a insulin syringe fitted with a 29 gauge needle in order to create an injection site, (b) immediate injection of the dsRNA at this site using a Hamilton syringe with a 33 gauge needle which (c) most likely will result in some leakage of tick hemolymph/fluids.
Figure 3. A panel of tick six groups in which RNAi was used to screen for tick protective antigens in Amblyomma americanum. The phenotypic changes in ticks can be seen when compared with the positive subolesin RNAi control and the negative unrelated dsRNA control. In this experiment the effect of RNAi on tick mortality, weights, and oviposition of each group was statistically analyzed.
Although other methods have been described for RNAi in ticks14, 33, the injection of dsRNA described here is the most widely used in both unfed (Table 1) and fed ticks16,25,34. RNAi has been shown to be a valuable tool for the study of tick gene function, the characterization of the tick-pathogen interface and the screening and characterization of tick protective antigens14,35. In particular, RNAi has become the most valuable tool for functional analyses in ticks35.
Methodologically, RNAi will likely evolve into more efficient methods that may allow gene knockdown in a large number of individuals. The mechanism of dsRNA-induced RNAi in ticks should be refined to contribute to a better understanding and utilization of this genetic approach in this species35,36. The extent of off-target effects of RNAi in ticks is also an important question that needs to be fully addressed14,27. Finally, RNAi will most likely provide comprehensive contributions to the study of tick gene regulation and systems biology and the tick-pathogen interface and may have an impact on the development of vaccines to control tick infestations and the transmission of tick-borne pathogens.
The authors have nothing to disclose.
We thank members of our laboratories for fruitful discussions and technical assistance. This video presentation was supported by the Associate Dean for Research and the Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University. The research was funded by the Ministerio de Ciencia e Innovación, Spain (project BFU2008-01244/BMC), the CSIC intramural project PA1002451 to JF, the Walter R. Sitlington Endowed Chair for Food Animal Research to KMK, CVHS 2009 RAC grant, OAES Animal Health Funds and USDA, National Research Initiative Competitive Grant, No. 2007-04613.
Material Name | Tip | Company | Catalogue Number | Comment |
---|---|---|---|---|
Access RT-PCR system | Promega | A1250 | ||
Purelink PCR purification kit | Invitrogen | K3100-02 | ||
Megascript RNAi kit | Ambion | AM1626M | ||
Red dental wax | Electron Microscopy Sciences | 72674 | ||
Plastic cups, 1.25 oz and lids | Solo Cup Company, Urbana Ill. | |||
Fine forceps | Electron Microscopy Sciences | Various | ||
Insulin syringe | Monoject | Fitted with a ½”, 29 gauge needle | ||
Hamilton syringe | Hamilton | 701SN,33/.375”/45DGR | Custom made | |
TriReagent | Sigma | 93289 | ||
iScript One-Step RT-PCR Kit with SYBR Green | Bio-Rad | 170-8892 | ||
Real-time PCR detection system | Bio-Rad | Several | Please refer to http://www.bio-rad.com/ |