This video protocol demonstrates the application of the neurosphere assay for the isolation and expansion of neural stem cells from the ganglionic eminences of embryonic day 14-mouse brain.
In mammalians, stem cells acts as a source of undifferentiated cells to maintain cell genesis and renewal in different tissues and organs during the life span of the animal. They can potentially replace cells that are lost in the aging process or in the process of injury and disease. The existence of neural stem cells (NSCs) was first described by Reynolds and Weiss (1992) in the adult mammalian central nervous system (CNS) using a novel serum‐free culture system, the neurosphere assay (NSA). Using this assay, it is also feasible to isolate and expand NSCs from different regions of the embryonic CNS. These in vitro expanded NSCs are multipotent and can give rise to the three major cell types of the CNS. While the NSA seems relatively simple to perform, attention to the procedures demonstrated here is required in order to achieve reliable and consistent results. This video practically demonstrates NSA to generate and expand NSCs from embryonic day 14-mouse brain tissue and provides technical details so one can achieve reproducible neurosphere cultures. The procedure includes harvesting E14 mouse embryos, brain microdissection to harvest the ganglionic eminences, dissociation of the harvested tissue in NSC medium to gain a single cell suspension, and finally plating cells in NSA culture. After 5-7 days in culture, the resulting primary neurospheres are passaged to further expand the number of the NSCs for future experiments.
1. Basic Set Up Before Proceeding to Dissection:
2. Harvesting E14 Mouse Brain and Micro-dissection:
3. Passaging and Expansion of Embryonic NSCs:
4. Representative Results:
In primary embryonic NSC culture, the majority of the cells will become hypertrophic and attach to the tissue culture dishes upon plating. While the majority of cells will either die or differentiate, after 2-3 days, proliferative cells make small clusters of cells that will detach from the substrate (Figure 1). Formation of large spheroidal aggregates in the first 48-hour of culture should not be mistaken for primary spheres. Aggregate formation mainly depends on the amounts of debris and non-dissociated tissue clumps in the culture. True neurospheres are phase bright and become more spherical as size increases (Figure 2). Small microspikes appears on the outer surface of viable and healthy spheres (Figure 3). After 5-7 days, the spheres must be round but not compacted; and should measure between 150 and 200 μm in diameter. If neurospheres are allowed to grow too large (after 9-10 days in culture), they might form aggregates or become dark in color because of cell death at the center of the spheres (see video). Large neurospheres might eventually begin to differentiate in situ (attaching to the substrate and migrating toward the periphery). It is also difficult to dissociate large neurospheres and subculture them.
Figure 1. Primary E14 NSC culture 3 days after plating. Arrows show the proliferating clusters of NSCs. Original magnification; 20x
Figure 2. Primary E14 NSC culture 7 days after plating. Original magnification; 10x
Figure 3. Passage one E14 neurospheres 5 days after plating. Note the micro-spikes (arrows) at the periphery of the spheres. Original Magnification; 20x
The neurosphere assay is the method of choice for the isolation and expansion of neural stem cells 1-5 because of its simplicity and reproducibility. This assay is an invaluable tool for large-scale generation of undifferentiated CNS precursor cells, which could be used for both in vitro and in vivo studies. It should be emphasized that neurospheres could be generated from both the bona fide neural stem cells and more restricted progenitors. Therefore, calculating the neurosphere forming frequency simply overestimates the number of bona fide NSCs in any given neural cell population 6. To estimate the frequency of bona fide NSCs, it is strongly recommended to use the Neural Colony Forming Cell Assay (N-CFCA), which has been developed for this purpose7.
To have a consistent high quality neurosphere culture of E14 NSCs, we recommend:
The authors have nothing to disclose.
This work was supported by funding from the Overstreet Foundation.
Material Name | Tip | Company | Catalogue Number | Comment |
---|---|---|---|---|
NeuroCult NSC Basal Medium | Medium | Stem Cell Technologies | 05700 | |
NeuroCult NSC Proliferation Supplements | Medium supplement | Stem Cell Technologies | 05701 | |
%0.05 trypsin-EDTA | Reagent | Gibco | 25300-062 | |
Soybean trypsin inhibitor | Reagent | Sigma | T6522 | |
Pen/Strep | Reagent | Gibco | 15140-122 | |
*MEM | Reagent | Gibco | 41500-018 | HEM component |
*HEPES | Reagent | Sigma | H4034 | HEM component |
*Distilled water | Reagent | Gibco | 15230-147 | |
Cell strainer | Sieve | BD Falcon | 352340 | |
T25 flask | Culture ware | Nalge Nunc international | 136196 | |
T80 flask | Culture ware | Nalge Nunc international | 178905 | |
15 ml tubes | Culture ware | BD Falcon | 352096 | |
50 ml tubes | Culture ware | BD Falcon | 352070 | |
Fine curved forceps | Surgical tools | Fine Science Tools | 11251‐35 | |
Small fine forceps | Surgical tools | Fine Science Tools | 11272‐30 | |
Small forceps | Surgical tools | Fine Science Tools | 11050‐10 | |
Fine scissors | Surgical tools | World Percision Instruments, Inc. | 500216 | |
EGF | Growth factor | R&D | 2028-EG | |
b-FGF | Growth factor | R&D | 3139-FB | |
Heparin | Growth factor | Sigma | H4784 | Reconstituted in PBS |
*To make HEM, mix 1×10L packet of MEM and160ml of 1M HEPES and bring the volume to 8.75 L using distilled water. Set the final PH to 7.4 and store it at 4°C.