Whole-cell patch-clamp recordings from auditory nerve fiber dendrites at the inner hair cell ribbon synapse in the mammalian cochlea.
The afferent synapse between the inner hair cell (IHC) and the auditory nerve fiber provides an electrophysiologically accessible site for recording the postsynaptic activity of a single ribbon synapse 1-4. Ribbon synapses of sensory cells release neurotransmitter continuously, the rate of which is modulated in response to graded changes in IHC membrane potential 5. Ribbon synapses have been shown to operate by multivesicular release, where multiple vesicles can be released simultaneously to evoke excitatory postsynaptic currents (EPSCs) of varying amplitudes 1, 4, 6-11. Neither the role of the presynaptic ribbon, nor the mechanism underlying multivesicular release is currently well understood.
The IHC is innervated by 10-20 auditory nerve fibers, and every fiber contacts the IHC with a unmyelinated single ending to form a single ribbon synapse. The small size of the afferent boutons contacting IHCs (approximately 1 μm in diameter) enables recordings with exceptional temporal resolution to be made. Furthermore, the technique can be adapted to record from both pre- and postsynaptic cells simultaneously, allowing the transfer function at the synapse to be studied directly 2. This method therefore provides a means by which fundamental aspects of neurotransmission can be studied, from multivesicular release to the elusive function of the ribbon in sensory cells.
1. Solutions
2. Making Holders for Dissected Tissue
3. Making Electrodes
4. Setting Up the Experiment
5. Dissection and Sample Preparation
6. Recording
7. Trouble Shooting
8. Representative Results
Figure 1. A-B. Typical transients recorded from an afferent fiber (A) and IHC (B) in response to a 10 mV hyperpolarizing voltage command from a holding voltage of -94 mV. Due to the narrow pipette diameter and high access resistance, the IHC recording (B) is suboptimal for whole cell IHC recording. The recording is shown here only to illustrate the difference between the capacitative transients from IHCs and afferent fibers. This can help to distinguish between the cell types when forming the whole-cell configuration. Whole-cell capacitative transients from IHCs are on the order of 5 times larger in amplitude than those from afferent fibers. C-D. Transients from A & B shown on an expanded timescale. C. The decay of the afferent response can be fit with two exponentials. The capacitance of the afferent ending was estimated from the fast component.
Figure 2. IV relations from an afferent bouton (A) and an IHC (B). IV relations are recorded from a holding potential of -84 mV with voltage steps from -124 mV to + 36 mV in 10 mV increments (nominal voltages). Voltages are shown to the right of some traces. These recordings were carried out with 5.8 mM extracellular KCl at room temperature. Scale for both: 500 pA, 200 ms.
A. IV relations from an afferent fiber at postnatal day 19. EPSCs are present during the majority of the voltage steps; EPSCs reverse positive to +6 mV. This recording was carried out in the presence of TTX to block voltage gated Na+ currents. Note the slowly activating inward current at hyperpolarizing voltages (Ih). This current is not present in IHCs or supporting cells and provides a good indication that the cell recorded from is an afferent fiber (see 3). B. IV relations from a P19 IHC. Due to the narrow pipette diameter and high access resistance, the recording is suboptimal for characterizing IHC currents and the currents are smaller than expected. The recording is shown here only to demonstrate the IV relations of IHCs and afferent fibers can be clearly distinguished, when an afferent fiber recording is attempted. Note the fast activating outward K+ currents at positive potentials (arrow) followed by delayed rectifier K+ currents 13.
Figure 3. Exemplar synaptic currents recorded from an afferent fiber at postnatal day 21 in the presence of 40 mM extracellular K+ to increase the rate of release from the IHC. Room temperature, with TTX applied to block voltage gated Na+ currents. A. Scale 200 pA, 5 ms, note the variable size and shape of EPSCs. For a detailed description of EPSC characteristics see 4. B. Two EPSCs marked in A (#: multiphasic, o: monophasic) shown on an expanded scale: Scale 100 pA, 1 ms.
Figure 4. Simultaneous recording of an IHC and contacting afferent bouton in an excised rat organ of Corti, postnatal day 10 (also see 2). A voltage step depolarizing the IHC provokes release of neurotransmitter and activates EPSCs in the afferent bouton. Upper trace: Voltage protocol for IHC depolarization. Holding potential: -79 mV, 50 ms step to -29 mV. Middle trace: L-type Ca2+ currents recorded from the IHC typically show little inactivation and activate at negative potentials. Bottom trace: Synaptic currents in the afferent fiber in response to IHC depolarization. Note the synaptic depression during a 50 ms IHC depolarization.
Figure 5. A. Exemplar extracellular recording from an afferent bouton at postnatal day 21. This was recorded at room temperature, with 5.8 mM extracellular K+. This recording has a typical signal to noise ratio for a recording in a preparation from a three week old rat. B. Average waveform for extracellular events recorded from a P20 afferent bouton. This is the average waveform from 10272 events.
Schematic 1. Cross sectional view through one turn of a rat cochlea illustrating the anatomical relation between the inner and outer hair cells, the spiral ganglia, stria vascularis and tectorial membrane.
The critical step in this procedure is the dissection. If the tissue is stretched or damaged during the dissection, afferent fibers will not survive. Tissue from younger rats is more elastic and forgiving. We find that postnatal days 10 to 11 are easiest to dissect and experiments have higher success rates. A significant degree of cochlear maturation occurs postnatally, with rats beginning to hear from around postnatal day 12 14. Therefore, at the age where the dissection is easiest, synapses may not be fully mature 4.
The dissection described here for rats is essentially the same for mice, the main difference being the smaller size of the mouse cochlea. This technique allows the properties of ribbon synapses to be examined in transgenically modified mice 15. Further modifications to this technique include: adding a fluorescent dye to the intracellular solution to label fibers 3; paired recordings with the presynaptic inner hair cell and postsynaptic afferent bouton, allowing the transfer function between pre and post synaptic cells to be determined 2 and loose-seal extracellular recordings at afferent boutons to avoid loss of cellular integrity. The extracellular recording configuration is easier to attain than the whole-cell configuration and experiments are generally longer lasting.
The authors have nothing to disclose.
This work was supported by a Deafness Research Foundation Research Grant to EY and NIDCD DC006476 to EG and by NIDCD DC005211 to the Center for Hearing and Balance, Johns Hopkins University. Artwork copyright Tim Phelps, Johns Hopkins University.
LG wrote the initial manuscript; EY and LG filmed the dissection and the recording. All authors provided exemplar figures and contributed to writing the manuscript.
Material Name | Tip | Company | Catalogue Number | Comment |
---|---|---|---|---|
Air table | TMC | |||
Gibraltar Stage with xy-table | Burleigh | |||
Axioscope FS2 upright microscope DIC optics Green filter | Zeiss | |||
Newvicon camera with controller | Dage | |||
Monitor | Dage | |||
Multiclamp 700B (or similar) | Molecular Devices | |||
Digidata 1322A (or similar) | Molecular Devices | |||
Manipulator MP285 | Sutter | |||
6-channel valve application system for local perfusion (used with hand made perfusion pipettes) | Warner | |||
PC with acquisition software (PClamp) | Molecular Devices |