24.10:

Determining Electric Field From Electric Potential

JoVE Core
Fizik
Bu içeriği görüntülemek için JoVE aboneliği gereklidir.  Oturum açın veya ücretsiz deneme sürümünü başlatın.
JoVE Core Fizik
Determining Electric Field From Electric Potential

4,100 Views

00:00 min

April 30, 2023

The electric field and electric potential are related to each other. If the electric field at various points in the region of interest is known, it can be used to calculate the electric potential difference between any two points. Similarly, if the electric potential is known for various points, then it is possible to calculate the electric field.

In general, regardless of whether the electric field is uniform, it points in the direction of decreasing potential because the force on a positive charge is in the direction of the electric field and the direction of the lower electric potential. Furthermore, the magnitude of the electric field equals the rate of decrease in the electric potential with distance. The faster the potential decreases over a distance, the greater the electric field. The electric field is expressed as a gradient of the electric potential in the equation form.

Equation1

At each point, the potential gradient always points in the direction in which the potential increases the most with an infinitesimal change in position. Due to the negative sign in the above equation, the electric field points in the direction where the electric potential decreases the most. The above equation does not demand a particular zero point where the potential is zero, but instead this is an arbitrary point. The potential gradient, irrespective of where the zero has been defined, would always be the same.

Depending on the system's symmetry, the gradient operator can be used in different geometries. For example, the electric field of a point charge can be calculated using spherical symmetry.