22.13:

Electric Field Lines

JoVE Core
Fizik
Bu içeriği görüntülemek için JoVE aboneliği gereklidir.  Oturum açın veya ücretsiz deneme sürümünü başlatın.
JoVE Core Fizik
Electric Field Lines

6,144 Views

00:00 min

April 30, 2023

The three-dimensional representation of the electric field of a positive point charge requires tracing the electric field vectors, whose lengths decrease as the square of their distance from the charge and which point away from the charge at each point. This vector field is no doubt challenging to visualize. The visualization of electric fields becomes quickly intractable as the number of charges increases.

The solution to this problem is to use electric field lines, which are not vectors but describe a vector field.

They are defined such that the magnitude of the electric field at any point is given by the density of the electric field lines around that point. Since the density varies with distance from the charges and is defined uniquely at each point in space, it uniquely describes the field vector's magnitude. That is, there is a one-to-one correspondence between the magnitude of the electric field and the density of the electric field lines, thus justifying the definition.

If the electric field lines are close together, the field's magnitude is large at that point. The magnitude is small if the field lines are far apart at the cross-section.

The direction of the electric field is also uniquely defined by the electric field lines. At any point, the tangent to the electric field line determines the electric field's direction. Thus, the definition necessitates that electric field lines do not crisscross each other.

It is important to note that a single electric field line does not trace the magnitude of the electric field, nor does it represent a specific value of the field. Instead, the significant physical quantity is the density of the field lines.

Although the direction and relative intensity of the electric field can be deduced from a set of field lines, the lines can also be misleading. For example, the field lines drawn to represent the electric field in a region must, by necessity, be discrete. However, the actual electric field in that region exists at every point in space.