In the early 17th century, German astronomer and mathematician Johannes Kepler postulated three laws for the motion of planets in the solar system. His first law states that all planets orbit the Sun in an elliptical orbit, with the Sun at one of the ellipse's foci. Therefore, the distance of a planet from the Sun varies throughout its revolution around the Sun.
While in an elliptical orbit, the total energy of the planet is conserved. Therefore, the planet slows down when it is at apogee and speeds up when it is at perigee. These conclusions led Kepler to state his second law, that the radius vector of the planet sweeps out in equal areas in equal time. This means that if a planet takes the same time to travel from A için A1, and then from B için B1, then the areas AF1A1 and BF1B1 are equal, as shown in Figure 1.
Since the area is constant in a given time interval, the planet's sector velocity remains constant. Since the sector velocity is proportional to the planet's angular momentum, Kepler’s second law implies that the angular momentum of a planet in an elliptical orbit is conserved.