Summary

Photobiomodulation unter elektroenzephalographischen Kontrollen des Schlafes zur Stimulation der lymphatischen Entfernung von Toxinen aus dem Gehirn der Maus

Published: June 28, 2024
doi:

Summary

Diese Studie stellt die nicht-invasive und tragbare Technologie der transkraniellen Photobiomodulation unter elektroenzephalographischer Kontrolle zur Stimulation der lymphatischen Entfernung von Toxinen (z.B. lösliches Amyloid beta) aus dem Gehirn von gealterten und nicht anästhesierten BALB/c-Männchen während des natürlichen Tiefschlafs vor.

Abstract

Die meningealen Lymphgefäße (MLVs) spielen eine wichtige Rolle bei der Entfernung von Giftstoffen aus dem Gehirn. Die Entwicklung innovativer Technologien zur Stimulation der MLV-Funktionen ist eine vielversprechende Richtung in der Behandlung verschiedener Hirnerkrankungen, die mit MLV-Anomalien verbunden sind, einschließlich Alzheimer- und Parkinson-Krankheiten, Hirntumoren, traumatischen Hirnverletzungen und intrakraniellen Blutungen. Schlaf ist ein natürlicher Zustand, in dem die Drainageprozesse des Gehirns am aktivsten sind. Daher kann die Stimulation der Gehirndrainage und der MLVs während des Schlafs die ausgeprägtesten therapeutischen Effekte haben. Solche kommerziellen Technologien gibt es derzeit jedoch nicht.

In dieser Studie wird eine neue tragbare Technologie der transkraniellen Photobiomodulation (tPBM) unter elektroenzephalographischer (EEG) Kontrolle des Schlafes vorgestellt, die entwickelt wurde, um die Ausscheidung von Toxinen (z. B. lösliches Amyloid beta (Aβ)) aus dem Gehirn gealterter BALB/c-Mäuse zu stimulieren und die therapeutische Wirksamkeit verschiedener optischer Ressourcen zu vergleichen. Die Technologie kann unter dem natürlichen Zustand eines Heimkäfigs ohne Anästhesie verwendet werden, um die motorische Aktivität von Mäusen zu erhalten. Diese Daten eröffnen neue Perspektiven für die Entwicklung nicht-invasiver und klinisch vielversprechender Phototechnologien zur Korrektur altersbedingter Veränderungen der MLV-Funktionen und der Drainageprozesse des Gehirns sowie zur effektiven Reinigung des Hirngewebes von Metaboliten und Toxinen. Diese Technologie ist sowohl für präklinische Studien zu den Funktionen des schlafenden Gehirns als auch für die Entwicklung klinisch relevanter Therapien für schlafbezogene Hirnerkrankungen gedacht.

Introduction

Meningeale Lymphgefäße (MLVs) spielen eine wichtige Rolle bei der Entfernung von Toxinen und Metaboliten aus dem Hirngewebe 1,2,3. Die Schädigung von MLVs bei verschiedenen Hirnerkrankungen, einschließlich Tumoren, traumatischen Hirnverletzungen, Blutungen und neurodegenerativen Prozessen, geht mit einer Abnahme der MLV-Funktionen einher, die zum Fortschreiten dieser Pathologien führt 1,2,3,4,5,6 . Daher eröffnet die Entwicklung von Methoden zur Stimulation von MLVs neue Horizonte bei der Entstehung wirksamer Technologien zur Behandlung von Hirnerkrankungen. Kürzlich wurde eine nicht-invasive Technologie für eine effektive transkranielle Photobiomodulation (tPBM) vorgeschlagen, um MLVs zu stimulieren und Giftstoffe wie Blut und Aβ aus dem Gehirn zu entfernen 5,7,8,9,10,11,12. Interessant ist, dass der Tiefschlaf ein natürlicher Faktor für die Aktivierung von Lymphdrainageprozessen im Gehirn ist13,14. Basierend auf dieser Tatsache ist es logisch anzunehmen, dass die tPBM von MLVs während des Schlafs wirksamere therapeutische Effekte haben kann als während des Wachzustands 9,11,12,15. Derzeit gibt es jedoch keine kommerziellen Technologien für tPBM während des Schlafs16. Darüber hinaus werden Tierversuche zur Untersuchung der therapeutischen Wirkung von tPBM unter Narkose durchgeführt, die erforderlich ist, um das Gehirn genau mit Licht zu versorgen. Die Narkose beeinflusst jedoch die Drainage des Gehirns erheblich, was die Qualität der Forschungsergebnisse mindert17.

Aβ ist ein Stoffwechselprodukt normaler neuronaler Aktivität18. Wie es in kultivierten kortikalen Neuronen von Ratten festgestellt wurde, wird Aβ von ihnen mit hohen Raten in den extrazellulären Raum freigesetzt (2-4 Moleküle/Neuron/s für Aβ)19. Es gibt Hinweise darauf, dass die gelöste Form von Aβ, die sich im extrazellulären und perivaskulären Raum befindet, für Neuronen und Synapsen am toxischsten ist20. Das lösliche Aβ wird innerhalb von 1-2,5 h21 schnell aus dem menschlichen Gehirn ausgeschieden. MLVs sind die Tunnel zur Entfernung des löslichen Aβ aus dem Gehirn 1,7, das mit zunehmendem Alter abnimmt und zur Akkumulation von Aβ im gealterten Gehirn führt 1,22. Es gibt Hinweise darauf, dass extrazelluläre Anomalien des Aβ-Spiegels im Gehirn mit der kognitiven Leistungsfähigkeit im Alter korrelieren und mit der Entwicklung der Alzheimer-Krankheit (AD) assoziiert sind23,24. Daher gelten gealterte und alte Nagetiere als Alternativen zu transgenen Modellen für die Untersuchung der Amyloidose, einschließlich AD25,26.

In dieser Studie wird eine originelle und tragbare tPBM-Technologie unter elektroenzephalographischer (EEG) Kontrolle des tiefen oder nicht-schnellen Augenbewegungsschlafs (NREM) bei nicht anästhesierten männlichen BALB/c-Mäusen unterschiedlichen Alters vorgestellt, um die lymphatische Clearance von Aβ aus dem Gehirn in das periphere Lymphsystem (die tiefen zervikalen Lymphknoten, dcLNs) zu stimulieren.

Protocol

Alle Verfahren wurden in Übereinstimmung mit dem “Leitfaden für die Pflege und Verwendung von Labortieren”, der Richtlinie 2010/63/EU zum Schutz der für wissenschaftliche Zwecke verwendeten Tiere und den Richtlinien des Ministeriums für Wissenschaft und Hochschulbildung der Russischen Föderation (Nr. 742 vom 13.11.1984) durchgeführt, die von der Bioethikkommission der Staatlichen Universität Saratow genehmigt wurden (Protokoll Nr. 7, 22.09.2022). 1. Montage der Hardware<…

Representative Results

Im ersten Schritt konzentrierte sich die Studie auf die Etablierung der effektiven Lichtdosis (eine 1050 nm LED) zur Stimulation der lymphatischen Entfernung von fluoreszierendem Aβ aus dem Gehirn an dcLNs bei wachen erwachsenen (2-3 Monate alten, 26-29 g) männlichen BALB/c-Mäusen. Die Lichtdosen wurden zufällig als 10 J/cm2, 20 J/cm2 und 30 J/cm2 ausgewählt, basierend auf unseren früheren Studien zu tPBM-Effekten auf die Entfernung verschiedener Farbstoffe und der roten …

Discussion

MLVs sind ein wichtiges Ziel für die Entwicklung innovativer Technologien zur Modulation der Drainage des Gehirns und zur Entfernung von Zelltrümmern und Abfallstoffen aus dem Gehirn, insbesondere bei älteren Probanden, deren MLV-Funktion abnimmt 1,22. In einem homöostatischen Zustand ist der Tiefschlaf mit der natürlichen Aktivierung der Reinigung des Gehirngewebes verbunden13,14. Daher ist zu erwar…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Diese Forschung wurde durch ein Stipendium der Russischen Wissenschaftsstiftung (Nr. 23-75-30001) unterstützt.

Materials

0.1% Tween20 Helicon,  Russia SB-G2009-100ML
Catheter Scientific Commodities Inc., USA PE-10, 0.28 mm ID × 0.61 mm OD
CO2 chamber Binder, Germany CB-S 170
Confocal microscop Nikon, Japan A1R MP
Dental acrylic Zermack, Poland-Russia Villacryl S, V130V4Z05
Drill Foredom, Russia SR W-0016
Dumont forceps Stoelting, USA 52100-07
Evans Blue dye Sigma-Aldrich, St. Louis, MO, USA 206334
Hamilton Hamilton Bonaduz AG, Switzerland 29 G needle
Ibuprofen Sintez OJSC, Russia N/A  Analgesic drug
Insulin needle INSUPEN, Italy 31 G, 0.25 mm x 6 mm
Micro forceps Stoelting, USA 52102-02P
Microcentrifuge Gyrozen, South Korea GZ-1312
Microinjector Stoelting, USA 53311
Non-sharp tweezer Stoelting, USA 52108-83P
PINNACLE system Pinnacle Technology, USA 8400-K3-SL System for recording EEG (2 channels) and EMG (1 channel) of mice
Shaving machine Braun Series 3310s
Single and multi-channel pipettes Eppendorf, Austria Epp 3120 000.020, Epp 3122 000.019
Sodium chloride Kraspharma, Russia N/A
Soldering station AOYUE, China N/A
Stereotaxic frame Stoelting, USA 51500
Straight dissecting scissors Stoelting, USA 52132-10P
Tetracycline JSC Tatkhimfarmpreparaty, Russia N/A Eye ointment
Tweezer Stoelting, USA 52100-03
Ultrasonic cell disrupter Biobase, China USD-500
Wound retractor Stoelting, USA 52125
Xylanit Nita-Farm, Russia N/A Muscle relaxant
Zoletil 100 Virbac Sante Animale, France N/A General anesthesia

References

  1. Da Mesquita, S., et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature. 560 (7717), 185-191 (2018).
  2. Chen, J., et al. Meningeal lymphatics clear erythrocytes that arise from subarachnoid hemorrhage. Nat Commun. 11, 3159 (2020).
  3. Zou, W., et al. Blocking meningeal lymphatic drainage aggravates Parkinson’s disease-like pathology in mice overexpressing mutated α-synuclein. Transl Neurodegener. 8, 7 (2019).
  4. Hu, X., et al. Meningeal lymphatic vessels regulate brain tumor drainage and immunity. Cell Res. 30 (3), 229-243 (2020).
  5. Dong-Yu, L., et al. Photostimulation of brain lymphatics in male newborn and adult rodents for therapy of intraventricular hemorrhage. Nat Comm. 14 (1), 6104 (2023).
  6. Bolte, A., et al. Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis. Nat Commun. 11 (1), 4524 (2020).
  7. Semyachkina-Glushkovskaya, O., et al. Mechanisms of phototherapy of Alzheimer’s disease during sleep and wakefulness: the role of the meningeal lymphatics. Front Optoelectron. 16, 22 (2023).
  8. Dongyu, L., et al. Photostimulation of lymphatic clearance of β- amyloid from mouse brain: new strategy for the therapy of Alzheimer’s disease. Front Optoelectron. 16, 45 (2023).
  9. Semyachkina-Glushkovskaya, O., et al. Mechanisms of phototherapy of Alzheimer’s disease during sleep and wakefulness: the role of the meningeal lymphatics. Front Optoelectron. 16, 22 (2023).
  10. Semyachkina-Glushkovskaya, O., et al. Intranasal delivery of liposomes to glioblastoma by photostimulation of the lymphatic system. Pharmaceutics. 15 (1), 36 (2023).
  11. Semyachkina-Glushkovskaya, O., et al. Night photostimulation of clearance of beta-amyloid from mouse brain: New strategies in preventing Alzheimer’s disease. Cells. 10 (12), 3289 (2021).
  12. Semyachkina-Glushkovskaya, O., et al. Technology of the photobiostimulation of the brain’s drainage system during sleep for improvement of learning and memory in male mice. Biomed Opt Express. 15 (1), 44-58 (2024).
  13. Fultz, N., et al. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science. 366 (6465), 628-631 (2019).
  14. Xie, L., et al. Sleep drives metabolite clearance from the adult brain. Science. 342 (6156), 373-377 (2013).
  15. Semyachkina-Glushkovskaya, O., et al. Phototherapy of Alzheimer’s disease: Photostimulation of brain lymphatics during sleep: A systematic review. Int J Mol Sci. 24 (13), 10946 (2023).
  16. Semyachkina-Glushkovskaya, O., et al. Brain waste removal system and sleep: Photobiomodulation as an innovative strategy for night therapy of brain diseases. Int J Mol Sci. 24 (4), 3221 (2023).
  17. Hablitz, L. M., et al. Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Sci Adv. 5 (2), eaav5447 (2019).
  18. Fukumoto, H., et al. Primary cultures of neuronal and non-neuronal rat brain cells secrete similar proportions of amyloid beta peptides ending at A beta40 and A beta42. Neuroreport. 10 (14), 2965-2969 (1999).
  19. Moghekar, A., et al. Large quantities of Abeta peptide are constitutively released during amyloid precursor protein metabolism in vivo and in vitro. J Biol Chem. 286 (16), 15989-15997 (2011).
  20. Wells, C., Brennan, S., Keon, M., Ooi, L. The role of amyloid oligomers in neurodegenerative pathologies. Int J Biol Macromol. 181, 582-604 (2021).
  21. Savage, M., et al. Turnover of amyloid beta-protein in mouse brain and acute reduction of its level by phorbol ester. J Neurosci. 18 (5), 1743-1752 (1998).
  22. Ahn, J., et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature. 572 (7767), 62-66 (2019).
  23. Stevens, D., et al. Regional amyloid correlates of cognitive performance in ageing and mild cognitive impairment. Brain Commun. 4 (1), fcac016 (2022).
  24. Ma, C., Hong, F., Yang, S. Amyloidosis in Alzheimer’s disease: Pathogeny, etiology, and related therapeutic directions. Molecules. 27 (4), 1210 (2022).
  25. Kobro-Flatmoen, A., Hormann, T., Gouras, G. Intracellular amyloid-β in the normal rat brain and human subjects and its relevance for Alzheimer’s disease. J Alzheimers Dis. 95 (2), 719-733 (2023).
  26. Ahlemeyer, B., Halupczok, S., Rodenberg-Frank, E., Valerius, K., Baumgart-Vogt, E. Endogenous murine amyloid-β peptide assembles into aggregates in the aged C57BL/6J mouse suggesting these animals as a model to study pathogenesis of amyloid-β plaque formation. J Alzheimers Dis. 61 (4), 1425-1450 (2018).
  27. Zhinchenko, E., et al. Pilot study of transcranial photobiomodulation of lymphatic clearance of beta-amyloid from the mouse brain: Breakthrough strategies for nonpharmacologic therapy of Alzheimer’s disease. Biomed Opt Express. 10 (8), 4003-4017 (2019).
  28. Semyachkina-Glushkovskaya, O., et al. Transcranial photobiomodulation of clearance of beta-amyloid from the mouse brain: Effects on the meningeal lymphatic drainage and blood oxygen saturation of the brain. Adv Exp Med Biol. 1269, 57-61 (2021).
  29. Semyachkina-Glushkovskaya, O., et al. Photobiomodulation of lymphatic drainage and clearance: Perspective strategy for augmentation of meningeal lymphatic functions. Biomed Opt Express. 11 (2), 725-734 (2020).
  30. Zhinchenko, E., et al. Photostimulation of extravasation of beta-amyloid through the model of blood-brain barrier. Electronics. 9 (6), 1056 (2020).
  31. Semyachkina-Glushkovskaya, O., et al. Photostimulation of cerebral and peripheral lymphatic functions. Transl Biophotonics. 2 (1-2), e201900036 (2020).
  32. Semyachkina-Glushkovskaya, O., et al. Photomodulation of lymphatic delivery of liposomes to the brain bypassing the blood-brain barrier: New perspectives for glioma therapy. Nanophotonics. 10 (12), 3215-3227 (2021).
  33. Semyachkina-Glushkovskaya, O., et al. Photomodulation of lymphatic delivery of Bevacizumab to the brain: The role of singlet oxygen. Adv Exp Med Biol. 1395, 53-57 (2022).
  34. Semyachkina-Glushkovskaya, O., et al. Transcranial photosensitizer-free laser treatment of glioblastoma in rat brain. Int J Mol Sci. 24 (18), 13696 (2023).
  35. Blázquez-Castro, A. Direct 1O2 optical excitation: A tool for redox biology. Redox Biol. 13, 39-59 (2017).
  36. Spitler, R., Berns, M. Comparison of laser and diode sources for acceleration of in vitro wound healing by low-level light therapy. J Biomed Opt. 19 (3), 038001 (2014).
  37. Sato, K., Watanabe, R., Hanaoka, H., Nakajima, T., Choyke, P., Kobayashi, H. Comparative effectiveness of light emitting diodes (LEDs) and Lasers in near infrared photoimmunotherapy. Oncotarget. 7 (12), 14324-14335 (2016).
  38. Keshri, G., Gupta, A., Yadav, A., Sharma, S., Singh, S. Photobiomodulation with pulsed and continuous wave near-infrared laser (810 nm, Al-Ga-As) augments dermal wound healing in immunosuppressed rats. PLoS One. 11 (11), e0166705 (2016).
  39. Kim, H., et al. Pulse frequency dependency of photobiomodulation on the bioenergetic functions of human dental pulp stem cells. Sci Rep. 7 (1), 15927 (2017).
  40. Chen, Z., et al. The pulse light mode enhances the effect of photobiomodulation on B16F10 melanoma cells through autophagy pathway. Lasers Med Sci. 38 (1), 71 (2023).
  41. Mezey, E., et al. An immunohistochemical study of lymphatic elements in the human brain. Proc Natl Acad Sci U S A. 118 (3), e2002574118 (2021).
  42. Chang, J., et al. Characteristic features of deep brain lymphatic vessels and their regulation by chronic stress. Research. 6, 0120 (2023).
  43. Prineas, L. W. Multiple sclerosis: Presence of lymphatic capillaries and lymphoid tissue in the brain and spinal cord. Science. 203 (4385), 1123-1125 (1979).
  44. Semyachkina-Glushkovskaya, O., et al. Pilot identification of the Live-1/Prox-1 expressing lymphatic vessels and lymphatic elements in the unaffected and affected human brain. bioRxiv. , (2021).
  45. Semyachkina-Glushkovskaya, O., Postnov, D., Kurths, J. Blood-brain barrier, lymphatic clearance, and recovery: Ariadne’s thread in labyrinths of hypotheses. Int J Mol Sci. 19 (12), 3818 (2018).
This article has been published
Video Coming Soon
Keep me updated:

.

Cite This Article
Blokina, I., Iluykov, E., Myagkov, D., Tuktarov, D., Popov, S., Inozemzev, T., Fedosov, I., Shirokov, A., Terskov, A., Dmitrenko, A., Evsyukova, A., Zlatogorskaya, D., Adushkina, V., Tuzhilkin, M., Manzhaeva, M., Krupnova, V., Dubrovsky, A., Elizarova, I., Tzoy, M., Semyachkina-Glushkovskaya, O. Photobiomodulation Under Electroencephalographic Controls of Sleep for Stimulation of Lymphatic Removal of Toxins from Mouse Brain. J. Vis. Exp. (208), e67035, doi:10.3791/67035 (2024).

View Video