Un protocole est présenté pour la conception et la fabrication de ballons de récupération de poissons capteurs et de poissons vivants, permettant d’évaluer leur condition physique et leurs performances biologiques dans les structures hydrauliques. La méthode optimise les performances de l’étiquette du ballon en tenant compte de facteurs tels que le volume du ballon, les temps de gonflage/dégonflage, la sélection des composants et les caractéristiques de l’eau injectée.
Les poissons peuvent subir des blessures et mourir lorsqu’ils traversent les moyens de transport hydrauliques des barrages hydroélectriques, même si ces moyens de transport sont conçus pour être respectueux des poissons, comme les systèmes de dérivation en aval, les évacuateurs de crues modifiés et les turbines. Les principales méthodes utilisées pour étudier les conditions de passage des poissons dans les structures hydrauliques consistent en des tests directs et in situ à l’aide de la technologie Sensor Fish et de poissons vivants. Les données des poissons capteurs aident à identifier les facteurs de stress physiques et leur emplacement dans l’environnement de passage des poissons, tandis que les poissons vivants sont évalués pour les blessures et la mortalité. Les étiquettes de ballon, qui sont des ballons autogonflants attachés à l’extérieur aux poissons capteurs et aux poissons vivants, aident à leur récupération après avoir traversé des structures hydrauliques.
Cet article se concentre sur le développement d’étiquettes de ballons avec un nombre variable de capsules solubles à base de plantes contenant un mélange d’acide oxalique, de poudres de bicarbonate de sodium et d’eau à deux températures différentes. Nos recherches ont permis de déterminer que les ballons étiquetés avec trois capsules, injectés avec 5 ml d’eau à 18,3 °C, atteignaient systématiquement le volume de ballonnet souhaité. Ces étiquettes avaient un volume de gonflage moyen de 114 cm 3 avec un écart-type de 1,2 cm3. Parmi les ballons à ballons injectés avec de l’eau à 18,3 °C, il a été observé que les ballons à deux capsules mettaient le plus de temps à atteindre leur gonflage complet. De plus, les étiquettes de ballons à quatre capsules ont démontré un temps de début de gonflage plus rapide, tandis que les étiquettes de ballons à trois capsules ont démontré un temps de début de dégonflage plus rapide. Dans l’ensemble, cette approche s’avère efficace pour valider le rendement des nouvelles technologies, améliorer la conception des turbines et prendre des décisions opérationnelles pour améliorer les conditions de passage des poissons. Il s’agit d’un outil précieux pour la recherche et les évaluations sur le terrain, aidant à affiner la conception et l’exploitation des structures hydrauliques.
L’hydroélectricité est une ressource d’énergie renouvelable importante dans le monde entier. Aux États-Unis, on estime que l’hydroélectricité contribue à hauteur de 38 %, soit 274 TWh, à l’électricité produite à partir de sources renouvelables1 et qu’elle pourrait ajouter environ 460 TWh par an2. Cependant, à mesure que le développement de l’hydroélectricité augmente, les préoccupations concernant les blessures et la mortalité des poissons lors du passage hydraulique sont devenues primordiales3. Divers mécanismes contribuent aux blessures des poissons pendant le passage, notamment la décompression rapide (barotraumatisme), la contrainte de cisaillement, la turbulence, les frappes, la cavitation et le broyage4. Bien que ces mécanismes de blessure n’aient pas d’impact immédiat sur l’état général des poissons, ils peuvent les rendre plus vulnérables aux maladies, aux infections fongiques, aux parasites et à la prédation5. De plus, les blessures physiques directes résultant de collisions avec des turbines ou d’autres structures hydrauliques peuvent entraîner une mortalité importante, ce qui souligne l’importance d’atténuer ces risques dans le développement de l’hydroélectricité.
L’une des méthodes les plus courantes pour évaluer les conditions de passage des poissons consiste à relâcher des poissons-capteurs et des poissons vivants à travers des structures hydrauliques 6,7. Le Sensor Fish est un dispositif autonome conçu pour étudier les conditions physiques que subissent les poissons lors de leur passage à travers les structures hydrauliques, y compris les turbines, les évacuateurs de crues et les alternatives de contournement des barrages 8,9. Équipé d’un accéléromètre 3D, d’un gyroscope 3D, d’un capteur de température et d’un capteur de pression9, le Sensor Fish fournit des données précieuses sur les conditions de passage des poissons.
Les étiquettes de ballons, qui sont des ballons autogonflants attachés à l’extérieur aux poissons capteurs et aux poissons vivants, aident à leur récupération après avoir traversé des structures hydrauliques. Les étiquettes de ballons sont constituées de capsules solubles remplies de produits chimiques générant des gaz (par exemple, de l’acide oxalique et du bicarbonate de sodium), d’un bouchon en silicone et d’une ligne de pêche. Avant le déploiement, de l’eau est injectée à travers le bouchon en silicone dans le ballon. L’eau dissout les capsules végétales, déclenchant une réaction chimique qui produit du gaz gonflant le ballon. Dans cette réaction de neutralisation, le bicarbonate de sodium, une base faible, et l’acide oxalique, un acide faible, réagissent pour former du dioxyde de carbone, de l’eau et de l’oxalate de sodium10. La réaction chimique est fournie ci-dessous :
2NaHCO3+ H 2 C2O 4 → 2CO 2 + 2H2O + Na 2 C2O4
Le ballon gonflé augmente la flottabilité des poissons capteurs et des poissons vivants, leur permettant de flotter à la surface de l’eau pour une récupération plus facile.
Le nombre d’étiquettes de ballonnet nécessaires pour réaliser la flottaison et faciliter la récupération d’un échantillon (p. ex., poisson capteur ou poisson vivant) peut varier en fonction des caractéristiques du volume et de la masse de l’échantillon. La durée de gonflage de l’étiquette du ballon peut être ajustée en injectant de l’eau à différentes températures. L’eau plus froide augmentera le temps de gonflage, tandis que l’eau plus chaude le diminuera. Des étiquettes de ballons ont été utilisées avec succès dans divers endroits, y compris le Farmers Screen, une structure horizontale unique de criblage de poissons et de débris à Hood River, dans l’Oregon11, et une turbine Francis au barrage de Nam Ngum en République démocratique populaire lao12. Un autre exemple d’étiquette de ballon disponible dans le commerce est le Hi-Z Turb’N Tag13,14. Le Hi-Z Turb’N Tag permet de régler le temps de gonflage entre 2 min et 60 min, en fonction de la température de l’eau injectée13. Cette technologie a été utilisée dans le cadre d’études sur les poissons dans de nombreux sites sur le terrain, y compris des études portant sur des saumoneaux quinnat relâchés au barrage Rocky Reach, sur le fleuve Columbia, et sur des aloses savoureuses juvéniles au barrage Hadley Falls, sur la rivière Connecticut15,16. Les deux technologies utilisent des réactions chimiques acido-basiques pour gonfler les étiquettes des ballons en vue de leur récupération.
Cette méthode offre une rentabilité et une simplicité de fabrication, avec un coût de matériau estimé à seulement 0,50 $ par ballon. Comme décrit ici, le processus de fabrication est facile à suivre, ce qui rend la production d’étiquettes de ballons accessible à tous.
Cette étude a conclu que les étiquettes à ballonnet à trois capsules injectées avec 5 mL d’eau à 18,3 °C avaient un temps de gonflage plus lent et un volume systématiquement plus important que les étiquettes à ballons à deux et quatre capsules. Lorsque les étiquettes du ballon ont été injectées avec de l’eau à 12,7 °C, le volume moyen était plus petit et le temps de gonflage était plus long. Les trois capsules commencent à se dégonfler en premier, suivies des quatre capsules et enfin des deux cap…
The authors have nothing to disclose.
Cette étude a été financée par le Bureau des technologies de l’énergie hydraulique du département de l’Énergie des États-Unis (DOE). Les études en laboratoire ont été menées au Pacific Northwest National Laboratory, qui est exploité par Battelle pour le DOE en vertu du contrat DE-AC05-76RL01830.
3D Printed Silicone Stopper Plate | NA | NA | |
ARC800 Sensor Fish | ATS | NA | |
FDM 3D printer | NA | NA | |
Manual Capsule Filler Machine CN-400CL (Size #3) | Capsulcn | NA | |
Mold Star 15 SLOW | Smooth-On | NA | |
Oil-Resistant Buna-N O-Ring | McMaster-Carr | SN: 9262K141 | |
Oxalic Acid, 98%, Anhydrous Powder (C2H2O4) | Thermo Scientific | CAS: 144-62-7 | |
Rubber Band Expansion Tool | iplusmile | NA | |
Separated Vegetable Cellulose Capsules (Size #3) | Capsule Connection | NA | |
Smiley Face YoYo Latex balloon | YoYo Balloons, Etc. | NA | |
Sodium Bicarbonate Powder (CHNaO3) | Sigma | CAS: 144-55-8 | |
Spectra Fiber Braided Fishing Line (50 lbs.) | Power Pro | NA |