Мы демонстрируем изготовление устройства обратного электродиализа с использованием катионообменных мембран (CEM) и анионообменных мембран (AEM) для производства электроэнергии.
Обратный электродиализ (RED) является эффективным способом получения энергии путем смешивания двух различных концентраций солей в воде с использованием катионообменных мембран (CEM) и анионообменных мембран (AEM). Стек RED состоит из чередующегося расположения катионообмонной мембраны и анионообменных мембран. Устройство RED выступает в качестве потенциального кандидата для удовлетворения универсального спроса на будущие энергетические кризисы. Здесь, в этой статье, мы демонстрируем процедуру изготовления устройства обратного электродиализа с использованием лабораторных CEM и AEM для производства электроэнергии. Активная площадь ионообмонной мембраны составляет 49см2. В этой статье мы представляем пошаговую процедуру синтеза мембраны с последующим измерением сборки и мощности стека. Также были объяснены условия измерения и расчет чистой выходной мощности. Кроме того, мы описываем фундаментальные параметры, которые учитываются для получения достоверного результата. Мы также предоставляем теоретический параметр, который влияет на общую производительность клеток, относящуюся к мембране и кормовому раствору. Короче говоря, этот эксперимент описывает, как собирать и измерять красные клетки на одной платформе. Он также содержит принцип работы и расчет, используемые для оценки чистой выходной мощности стека RED с использованием мембран CEM и AEM.
Сбор энергии из природных ресурсов является экономичным методом, который является экологически чистым, тем самым делая нашу планету зеленой и чистой. До сих пор было предложено несколько процессов для извлечения энергии, но обратный электродиализ (RED) имеет огромный потенциал для преодоления энергетического кризиса проблема1. Производство электроэнергии от обратного электродиализа является технологическим прорывом для декарбонизации мировой энергетики. Как следует из названия, RED представляет собой обратный процесс, при котором альтернативный клеточный компартмент заполняется высококонцентрированным солевым раствором и низкоконцентрированным солевым раствором2. Химический потенциал, генерируемый разностью концентраций солей на ионообменных мембранах, собранных с электродов на конце отсека.
С 2000 года было опубликовано много научных статей, дающих представление о RED теоретически и экспериментально3,4. Систематические исследования условий эксплуатации и исследования надежности в стрессовых условиях улучшили архитектуру стека и повысили общую производительность ячейки. Несколько исследовательских групп отвлекли свое внимание на гибридное применение RED, такие как RED с процессом опреснения5,RED с солнечной энергией6,RED с процессом обратного осмоса (RO)5,RED с микробным топливным элементом7и RED с процессом радиационного охлаждения8. Как упоминалось ранее, существует много возможностей для реализации гибридного приложения RED для решения проблемы энергии и чистой воды.
Было принято несколько методов для повышения производительности КРАСНЫХ клеток и ионообменных способностей мембраны. Адаптация катионообменных мембран с различными типами ионов с использованием группы сульфоновой кислоты (-SO3H), группы фосфоновой кислоты (-PO3H2)и группы карбоновой кислоты (-COOH) является одним из эффективных способов изменения физико-химических свойств мембраны. Арионообменные мембраны сшиты с аммониевыми группами ( )9. Высокая ионная проводимость AEM и CEM без ухудшения механической прочности мембраны является важным параметром для выбора подходящей мембраны для применения в устройстве. Прочная мембрана в условиях напряжения обеспечивает механическую стабильность мембраны и повышает долговечность устройства. Здесь в приложении RED используется уникальная комбинация высокоэффективных отдельно стоящих сульфированных поли (эфир эфир кетонов) (sPEEK) в качестве катионообменных мембран с FAA-3 в качестве анионообменных мембран. На рисунке 1 показана блок-схема экспериментальной процедуры.
Рисунок 1:Процедурная диаграмма. На блок-схеме представлена процедура, принятая для получения ионообменных мембран с последующим процессом измерения обратного электродиализа. Пожалуйста, нажмите здесь, чтобы просмотреть увеличенную версию этого рисунка.
В принципе работы RED в основном доминируют физико-химические свойства мембраны, которая является важной частью системы RED, как показано на рисунке 3. Здесь мы опишем фундаментальные характеристики мембраны для обеспечения высокопроизводительной системы RED. Удельная иоп…
The authors have nothing to disclose.
Эта работа была поддержана грантом Национального исследовательского фонда Кореи (NRF), финансируемым правительством Кореи (MEST) (No. НРФ-2017R1A2A2A05001329). Авторы рукописи благодарны Университету Соган, Сеул, Республика Корея.
AEM based membrane | Fumion | P1810-194 | Ionomer |
CEM based membrane | Fumion | E550 | Ionomer |
Digital torque wrench | Torqueworld | WP2-030-09000251 | wrench |
Labview software | Natiaonal Instrument | – | Software |
Laptop | LG | – | PC |
Magnetic stirrer | Lab Companion | – | MS-17BB |
N, N-Dimethylacetamide | Sigma aldrich | 271012 | Chemical |
N-Methyl-2- pyrrolidone | Daejung | 872-50-4 | Chemical |
Peristaltic pump | EMS tech Inc | – | EMP 2000W |
Potassium hexacyanoferrate(II) trihydrate | Sigma aldrich | P3289 | Chemical |
Potassium hexacyanoferrate(III) | Sigma aldrich | 244023 | Chemical |
Pressure Gauge | Swagelok | – | Guage |
Reverse electrodialysis setup | fabricated in lab | – | Device |
RO system pure water | KOTITI | – | Water |
Rotary evaporator | Hitachi | YEFO-KTPM | Induction motor |
Sodium Chloride | Sigma aldrich | S9888 | Chemical |
Sodium Hydroxide | Merk | 1310-73-2 | Chemical |
Source meter | Keithley | – | 2410 |
Spacer | Nitex, SEFAR | 06-250/34 | Spacer |
Sulfuric acid | Daejung | 7664-93-9 | Chemical |
Tube | Masterflex tube | 96410-25 | Rubber tube |