Summary

猪角膜组织外植研究单纯疱疹病毒-1抗病毒药物的功效

Published: September 20, 2021
doi:

Summary

我们描述了使用猪角膜来测试实验药物的抗病毒功效。

Abstract

病毒和细菌可通过角膜感染导致各种眼部表面缺陷和退化,如伤口和溃疡。由于血清超常范围为全球 60-90%,单纯疱疹病毒类型-1 (HSV-1) 通常会导致或非酸性区域的粘皮病变,这也表现为病变和感染相关失明。虽然目前的抗病毒药物是有效的,但耐药性和持久性毒副作用的出现需要开发针对这种无处不在的病原体的新型抗病毒药物。虽然体外评估提供了一些有关新兴抗病毒药物的功能数据,但它们并不显示体内眼组织具有复杂性。然而,在体内研究是昂贵的,需要训练有素的人员,尤其是当与病毒剂工作。因此,前体内模型是高效但廉价的抗病毒测试步骤。在这里,我们讨论一个协议,研究感染HSV-1使用猪角膜前体内和方法,以治疗他们使用现有的和新的抗病毒药物。我们还演示了使用 HSV-1 进行斑块检测的方法。详细的方法可用于进行类似的实验,以研究类似于HSV-1病原体的感染。

Introduction

患有眼部感染的人经常会出现视力丧失1。由于全球血清高超常,HSV感染者患有复发性眼部感染,导致角膜疤痕、频闪角膜炎和新血管化2、3、4、5。HSV感染也显示导致较少的频率,免疫功能低下,未经治疗的患者,如脑炎和系统性发病率6,7,8的一系列严重情况。像Acyclovir(ACV)及其核苷类比这样的药物在抑制HSV-1感染甚至控制重新激活方面已经取得了一致的成功,然而这些药物的长期使用与肾衰竭、胎儿畸形和未能限制抗药性对进化的病毒株9、10、11、12、13的产生有关。与HSV-1眼部感染相关的复杂性,以前曾使用人类角膜细胞的单层和3D培养物进行体外研究,并使用穆林或兔眼感染进行体内研究。虽然这些体外模型提供了关于HSV-1感染的细胞生物成分的重要数据,但是,它们不能模仿角膜组织的复杂复杂性,也无助于照亮病毒树突传播。相比之下,虽然体内系统在显示 HSV-1 感染期间角膜感染传播和免疫激活反应方面更有见地,但它们确实附带了警告,即它们需要训练有素的研究人员和大型动物护理设施来忽略实验。

在这里,我们使用猪角膜作为前体内模型来检查HSV-1感染诱发的伤口系统。通过组织外植培养,可以研究某些药物的潜在药理学以及感染引起的伤口系统的细胞和分子生物学。该模型也可以修改为用于其他病毒和细菌感染。在这项研究中,猪角膜被用来测试临床前小分子BX795的抗病毒功效。由于容易获得和成本效益,更倾向于使用猪角膜。此外,猪角膜模型是人眼的良好模型,角膜易于分离,适合感染和可视化,坚固耐用,可处理15。猪角膜也可与人类角膜模型在跨角膜渗透性和全身吸收15的复杂性相媲美。通过使用这个模型进行研究,我们能够阐明BX795作为HSV-1病毒感染的称职抑制剂如何值得进一步研究,并增加了将其分类为潜在的小分子抗病毒化合物16的文献。

Protocol

这项研究中使用的所有猪组织都由第三方私人组织提供,伊利诺伊大学芝加哥分校的人员没有对动物进行处理。 1. 材料 试剂 使用以下试剂进行普拉克检测:粉末甲基纤维素、杜尔贝科改良鹰的介质(DMEM)、胎儿牛血清(FBS)、青霉素和链霉素(P/S)用于普拉克检测。 使用水晶紫罗兰片剂和乙醇(分子生物学等级)为斑块检测准备水晶紫…

Representative Results

为了了解实验抗病毒药物的功效,在进行人体人体临床试验之前,需要对它们进行广泛的测试。在这方面,必须确定正控、阴性控制和测试组。三氟二甲胺(TFT)长期以来一直被用作治疗疱疹角膜炎的首选治疗方法。作为阳性控制,TFT治疗的角膜组显示感染传播较低。作为负控制,我们使用 DMSO 或溶解在 PBS 中的车辆控制。BX795,实验性临床前药物是测试组。每组共分配了4个角?…

Discussion

先前的研究表明,BX795作为抗HSV-1感染的抗病毒药物具有很有前途的作用:通过抑制坦克绑定激酶1(TBK1)16。TBK1和自噬在帮助抑制HSV-1感染方面都起到了一定的作用,这表现在人类角膜上皮细胞上。BX795在浓度为10μM的抗病毒活性方面被证明是最大的有效,并且使用西方斑点分析和关键病毒蛋白的病毒斑块分析,BX795被证明可以抑制HSV-1感染,与TFT16的活动相当。?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究得到了国家卫生研究院向D.S.A.提供的F30EY024710、RO1 AI139768和RO1 EY029426的资助,并得到了国家眼科研究所F30EY025981赠款的支持。研究使用从公园包装公司获得的猪角膜进行,4107阿什兰大道,新城,芝加哥,IL-60609

Materials

30 G hypodermic needles. BD 305128
500 mL glass bottle. Thomas Scientific 844027
Antimycotic and Antibiotic (AA) GIBCO 15240096 Aliquot into 5 mL tubes and keep frozen until use
Benchtop vortexer. BioDot BDVM-3200
Biosafety cabinet with a Bio-Safety Level-2 (BSL-2) certification. Thermofisher Scientific Herasafe 2030i
Calgiswab 6" Sterile Calcium Alginate Standard Swabs. Puritan 22029501
Cell scraper – 25 cm Biologix BE 70-1180 70-1250
Crystal violet Sigma Aldrich C6158 Store the powder in a dark place
Dulbecco’s modified Eagle’s medium – DMEM GIBCO 41966029 Store at 4 °C until use
Ethanol Sigma Aldrich E7023
Fetal bovine serum -FBS Sigma Aldrich F2442 Aliquot into 50 mL tubes and keep frozen until use
Flat edged tweezers – 2. Harward Instruments 72-8595
Freezers –80 °C. – Thermofisher Scientific 13 100 790
Fresh box of blades. Thomas Scientific TE05091
Guaze Johnson & Johnson 108 square inch folder 12 ply
HSV-1 17GFP grown in house Original strain from Dr. Patricia Spears, Northwestern University. GFP expressing HSV-1 strain 17
Insulin, Transferrin, Selenium – ITS GIBCO 41400045 Aliquot into 5 mL tubes and keep frozen until use
Magnetic stirrer. Thomas Scientific H3710-HS
Metallic Scissors. Harward Instruments 72-8400
Micropipettes 1 to 1000 µL. Thomas Scientific 1159M37
Minimum Essential Medium – MEM GIBCO 11095080 Store at 4 °C until use
OptiMEM  GIBCO 31985047 Store at 4 °C until use
Penicillin/streptomycin. GIBCO 15140148 Aliquot into 5 mL tubes and keep frozen until use
Phosphate Buffer Saline -PBS GIBCO 10010072 Store at room temperature
Porcine Corneas Park Packaging Co., Chicago, IL 0 Special order by request
Procedure bench covers – as needed. Thermofisher Scientific S42400
Serological Pipettes Thomas Scientific P7132, P7127, P7128, P7129, P7137
Serological Pipetting equipment. Thomas Scientific Ezpette Pro
Stereoscope Carl Zeiss SteREO Discovery V20
Stirring magnet. Thomas Scientific F37120
Tissue culture flasks, T175 cm2. Thomas Scientific T1275
Tissue culture incubators which can maintain 5% CO2 and 37 °C temperature. Thermofisher Scientific Forma 50145523
Tissue culture treated plates (6-well). Thomas Scientific T1006
Trypsin-EDTA (0.05%), phenol red GIBCO 25-300-062 Aliquot into 10 mL tubes and keep frozen until use
Vero cells American Type Culture Collection ATCC CRL-1586

References

  1. Liesegang, T. J. Herpes simplex virus epidemiology and ocular importance. Cornea. 20 (1), 1-13 (2001).
  2. Farooq, A. V., Valyi-Nagy, T., Shukla, D. Mediators and mechanisms of herpes simplex virus entry into ocular cells. Current Eye Research. 35 (6), 445-450 (2010).
  3. Farooq, A. V., Shah, A., Shukla, D. The role of herpesviruses in ocular infections. Virus Adaptation and Treatment. 2 (1), 115-123 (2010).
  4. Xu, F., et al. Seroprevalence and coinfection with herpes simplex virus type 1 and type 2 in the United States, 1988-1994. Journal of Infectious Diseases. 185 (8), 1019-1024 (2002).
  5. Xu, F., et al. Trends in herpes simplex virus type 1 and type 2 seroprevalence in the United States. Journal of the American Medical Association. 296 (8), 964-973 (2006).
  6. Koganti, R., Yadavalli, T., Shukla, D. Current and emerging therapies for ocular herpes simplex virus type-1 infections. Microorganisms. 7 (10), (2019).
  7. Lobo, A. -., Agelidis, A. M., Shukla, D. Pathogenesis of herpes simplex keratitis: The host cell response and ocular surface sequelae to infection and inflammation. Ocular Surface. 17 (1), 40-49 (2019).
  8. Koujah, L., Suryawanshi, R. K., Shukla, D. Pathological processes activated by herpes simplex virus-1 (HSV-1) infection in the cornea. Cellular and Molecular Life Sciences. 76 (3), 405-419 (2019).
  9. Lass, J. H., et al. Antiviral medications and corneal wound healing. Antiviral Research. 4 (3), 143-157 (1984).
  10. Burns, W. H., et al. Isolation and characterisation of resistant Herpes simplex virus after acyclovir therapy. Lancet. 1 (8269), 421-423 (1982).
  11. Crumpacker, C. S., et al. Resistance to antiviral drugs of herpes simplex virus isolated from a patient treated with Acyclovir. New England Journal of Medicine. 306 (6), 343-346 (2010).
  12. Yildiz, C., et al. Acute kidney injury due to acyclovir. CEN Case Report. 2 (1), 38-40 (2013).
  13. Fleischer, R., Johnson, M. Acyclovir nephrotoxicity: a case report highlighting the importance of prevention, detection, and treatment of acyclovir-induced nephropathy. Case Rep Med. 2010, 1-3 (2010).
  14. Thakkar, N., et al. Cultured corneas show dendritic spread and restrict herpes simplex virus infection that is not observed with cultured corneal cells. Science Report. 7, 42559 (2017).
  15. Pescina, S., et al. et al Development of a convenient ex vivo model for the study of the transcorneal permeation of drugs: Histological and permeability evaluation. Journal of Pharmaceutical Sciences. 104, 63-71 (2015).
  16. Jaishankar, D., et al. An off-target effect of BX795 blocks herpes simplex virus type 1 infection of the eye. Science Translational Medicine. 10, 5861 (2018).
  17. Duggal, N., et al. Zinc oxide tetrapods inhibit herpes simplex virus infection of cultured corneas. Molecular Vision. 23, 26-38 (2017).

Play Video

Cite This Article
Yadavalli, T., Volety, I., Shukla, D. Porcine Corneal Tissue Explant to Study the Efficacy of Herpes Simplex Virus-1 Antivirals. J. Vis. Exp. (175), e62195, doi:10.3791/62195 (2021).

View Video