関節鏡検査手術中のプローブは、通常、軟部組織の状態を評価するために行われますが、このアプローチは常に主観的で定性的でした。このレポートは、関節鏡検査中に三軸力センサを用いて軟部組織の抵抗を定量的に測定できる探査装置について説明する。
関節鏡手術におけるプローブは、軟部組織を引っ張ったり押したりすることによって行われ、軟部組織の状態を理解するためのフィードバックを提供する。しかし、出力は「外科医の気持ち」に基づく定性に過ぎない。本明細書明細書では、三軸力センサを用いて軟組織の抵抗を定量的に測定することによってこの問題に対処するために開発されたプローブ装置について説明する。両方の条件(すなわち、アセスタブルラブラムおよび軟骨を模倣する特定の組織をプルおよびプッシュプローブ)下で、このプローブ装置は関節鏡検査中の関節の機械的特性を測定するのに有用であることが分かっている。
プローブのプロセスは、金属プローブとの関節で軟組織を引っ張ったり(またはフック)または押し込んだりし、関節鏡手術11、22の間に軟組織の状態を評価することを可能にする。しかし、調査の評価は非常に主観的で定性的である(すなわち、外科医の気持ち)。
この文脈に基づいて、引っ張り時に軟部組織の抵抗(例えば、股関節のカプセルまたはラブラム、膝関節の半月板または靭帯)を定量的に測定することができれば、外科医が軟部組織の修復の必要性を判断し、一次修復が完了した,4,後でも追加の外科的介入が必要かどうかを判断するのに有用であり得る。さらに、必要な外科的介入を示す主要な量的変数の基準を外科医に定めなければならない。さらに、反対方向に、プローブを押すと、関節軟骨組織の機械的特性を評価するために使用することができます。損傷、退化、または疾患を持つ軟骨組織の置換のような組織工学および再生医療の分野では、プッシュプローブの現場評価において重要な22,66である。
この記事では、関節鏡検査中に軟部組織の抵抗を定量的に測定できる3軸力センサ6を用いた探査装置の開発について報告する。このプローブ装置は、通常の関節鏡下プローブの半分の長さ(200mm)のプローブ成分と、プローブ先端の3軸の結果の力を測定するために歪みゲージセンサーが埋め込まれたグリップコンポーネントからなる(図1)。歪みゲージセンサーは、プローブ専用に作られました。ひずみゲージは、プローブコンポーネントと接続するグリップコンポーネントの上部に埋め込まれます。このプローブデバイスの解像度は0.005 Nです。精度と精度は、既知の重量(50g)を有する商品化重量によっても測定した。精度は0.013 N、精度は0.0035 Nです。
さらに、プローブを引いたり押したりしながら、外科医の人差し指または親指との距離を制御するために、グリップコンポーネントのスライド面が実装されています。抵抗を測定する過程において、測定値は、プローブ装置の引き上げ距離と引力の両方に依存し、そのため、プローブ装置の引き上げ距離は摺動面によって制御される。この研究では、プローブ装置のグリップ成分の滑り距離を、以下の代表的な事例に対して3mmに設定した。
図1に示すように、軟組織の抵抗力は、このように三軸に測定することができる。最初の力は、プローブ軸に沿って行われます。2番目はプローブのフックの方向に沿ってプローブ軸に対して垂直であり、3番目は横方向である。力の測定は、次の一般的な方法を使用して行われます:3軸力センサには、x軸、y軸、Z軸に対応する3つのホイートストーンブリッジが含まれています。歪みゲージの抵抗値は、適用される負荷の大きさに応じて変化し、ブリッジの中点電圧が変化し、力を電気信号として検出することができます。この装置の測定範囲は、プローブ軸の方向に50N、残りの2方向で10Nである。
専用ソフトウェアは、X、y、z方向(xは横方向、yは垂直方向(フックの方向)、zはプローブ軸)の3つの別々のグラフとして50Hzの周波数でリアルタイムに測定されるこのプローブ用に開発されました(図2)。オプションで、超音波装置の術中使用に通常使用される薄い弾性カバーは、ここで防水に使用することができます。
このプローブ装置はこうして軟組織の特定の条件を査定することを可能にすることができる。さらに、このプローブ装置は、関節軟骨組織の機械的特性を評価することを可能にする可能性がある。この上、このプローブ装置の先端を前方にスライドさせたまま関節軟骨表面上の反力は、関節軟骨の機械的性質と相関し得る。
本研究の目的は、プローブ装置の使用方法を紹介することです。まず、幻のヒップモデルでプルプローブしながら、代表的な組織としての模倣アセスタルラブラムの測定値です。調査は典型的な陰唇修復のための3つの外科ステップにおけるアセスタタブル・ラブラムの抵抗性の違いです。第二は、プッシュプローブを介した代表的な模倣軟骨組織の測定である。また、このプローブ装置と古典的なインデンテーション装置によって測定される模倣軟骨組織の2つの異なる機械的特性との間の相関が、関節軟骨の機械的特性を測定するための新しい方法を検証する。
この研究は、プローブ装置が関節鏡下の探査中に関節内の軟組織の抵抗を三軸的に測定できることを示している。具体的には、典型的な陰唇修復の3つの外科的ステップにおけるプルプローブによるアセスタタブルラブラムの抵抗力の差と、2)押し込みによるミミック軟骨組織の2つの異なる機械的特性の関係の2つについて調査した。
本研究によれば、この装置によるプルプローブによる定量的に測定された値は、関節軟部組織の状態を評価するのに有用であり得る。アセバタブルラブラムの最高抵抗レベルは、ラブラムが切断されたときに減少した。さらに、高抵抗レベルは、ラブラムが修復されたときに回復しました。したがって、調査力は外科的介入が十分であるかどうかを評価するのにも有用であり得る。さらに、このプルプロービングは、不安定性の前靭帯および後十字靭帯、肩の手術における膝の手術、ラブラムおよびローテーターカフにおけるバルガスまたは膝のバランスのための内側および外側側側副靭帯、ならびに他の関節鏡手術のために、他の軟部組織を評価するためにも利用することができる。
同様の結果は、同様の探査装置3を有する10の新鮮な死体股関節標本を使用して以前に報告された。ラブラムの最高抵抗レベルは、ラブラムが切断されたときに有意に減少した(無傷のラブラム、8.2 N;カットラブラム、4.0 N)。さらに、ラブラムの高抵抗レベルは、ラブラムが修復されたときに有意に回復した(カット、4.0 N;修理、7.8N)。さらに、カットラブラム(3.0-5.0 N)の抵抗レベルは、無傷(6.5-9.9 N)および修復されたラブラム(6.7-9.1 N)の耐性から95%の信頼度で統計的に分離された。したがって、ラブラム内の病変を検出するための閾値は、ラブラムの最高抵抗レベルの約5-6N(死体の4-6 N)である決定され得る。現在の研究によると、幻の股関節のそのような閾値は2-3 Nの周りにあるかもしれない。
現在の研究におけるもう一つの興味深い発見は、プッシュプローブ装置による模倣軟骨表面上の反力と古典的なインデント装置による弾性率との間の有意な正の関係である。プッシュプローブが図4に示すように行われ、次にプローブの先端が表面上を移動すると、反力が生じます。その結果、プローブの先端は反力によって押し上げられる。これは、プローブ軸の垂直力として測定されます。このような状況では、ミミック軟骨組織の機械的性質が小さい(すなわち、軟質)場合、軟骨の表面へのプッシュプローブの力が部分的に吸収され得る。そして、硬い軟骨組織に対するプッシュプローブの場合に比べて、プローブの先端に対する表面上のその反力が弱まるべきである。その結果、プローブ軸の垂直力が減少します。従って、模擬軟骨表面に対するプローブ軸の角度が、ウェアラブルジャイロセンサ99,1010などの新技術によって制御できる場合、軟骨組織の機械的特性をその時点で評価することができる。
いくつかの研究グループは、関節鏡検査,,,,,11、12、13、14、15、16、17、18、19、20、21、22、,12,13,14様々な方法を用いて、生体内の関節軟骨の品質を定量的に評価する装置を22開発しようとしました。 超音波17,18バイオ顕微鏡15,1611、関節鏡超音波画像検査12、光学反射分光13、パルスレーザー照射14、近赤外分光15、および超音波21ベース16、機械的2016、17、18、19、20、21、,17,18,19,20,21および電気機械内挿装置22。19インデント,のもの,11、12、13、14、15を除くほとんどのデバイスは、12,13軟骨層の厚さを測定することができます。111415ただし、関連する機械的特性値は測定できません。超音波および機械的ベースの圧着装置16、17、1817,18は関節軟骨のいくつかの機械的特性を測定することができるが、装置の先端の表面は、圧縮試験の従来の方法に続いて、関節軟骨表面に垂直に触れなければならない。16最近開発された残りの電気機械の字角装置22、23は22、装置の先端に球形を有する。ここでは、関節鏡検査中に軟骨表面への先端への触れ方を決定するのは難しいかもしれません。また、定量値(QP22,23)は連続的ではなく、むしろ損傷スコア(軟骨評価では4~20)と思われる。22,たとえば、4 QP 値は 2 QP 値の 2 倍の価値はありません。
重要な点の1つは、デバイスが古典的なプローブの形状に可能な限り付着していることです。さらに、プローブ装置に対する従来の公知のパラメータ単位(すなわちニュートン)は、連続的に定量的であるため一部に適用される。この文脈において、ここで説明するプローブ装置は、「外科医の気持ち」に基づいて従来の調査の条件を再現することができる。従って、このプローブ装置は関節内の特定の機械的特性を関節鏡検体中に測定するのに有用であることが示される。
結論として、ここで説明するプローブ装置は、プル-アンドプッシュプローブの両方を通じて三軸力センサを用いて軟組織の抵抗を定量的に測定することができ、従来のプローブの現在の定性的評価の改善である関節軟組織の包括的な病変または状態を定量的に評価するのに有用であり得る。
The authors have nothing to disclose.
この研究は、JSPS KAKENHIがJP19K09658、JP18KK0104、日本内視鏡研究推進財団(JFE)助成金を交付しました。著者は、Scrippsクリニックの整形外科研究教育センターのダリル・D・ドリマ教授と専門科学協力者エリック・W・ドーテ教授に、機関での古典的なインデントテストのためにカスタマイズされたデバイスを複製する許可と、コラボレーション研究で著者を支援してくれたことに感謝したいと考えています。
4.5 mm ARTHROGARDE Hip Access Cannula GREEN | Smith&Nephew | 72201741 | Arthroscopy cannula |
70° Autoclavable, Direct View | Smith&Nephew | 72202088 | 70 degrees arthroscope |
Bandicam | Bandicam Company | an advanced screen recording software | |
da Vinci 2.0 A Duo | XYZ printing Japan | 3D printer | |
Disposable Hip Pac | Smith&Nephew | 7209874 | A set of 3 guidewires and 2 arthroscopy needles |
Hip phantom | Sawbones USA, A Pacific Research Company | SKU:1516-23 | The phantom model for hip arthroscopy |
Labview | National Instruments | Systems engineering software for applications that require test, measurement, and control with rapid access to hardware | |
LAC-1 | SMAC | Electromechanical actuator | |
LSB200 | Futek | FSH00092 | A load cell |
Nanopass | Stryker | CAT02298 | A suturing instrument for the labrum repair |
Osteoraptor 2.3 Suture Anchor | Smith&Nephew | 72201991 | Anchor set for the labrum repair |
PC software for Probing sensor | Moosoft | PC software for Probing sensor | |
Poly-vinyl alcohol hydrogels | Sunarrow Limited | Poly-vinyl alcohol hydrogels | |
portable arthroscopy camera | Sawbones USA, A Pacific Research Company | SKU:5701 | Portable arthroscopy camera |
Probing sensor | Takumi Precise Metal Work Manufacturing Ltd | Probing device to measure resistance force to soft tissue in joint while probing | |
Samurai Blade | Stryker | CAT00227 | Arthroscopic scalpel |
Standard fixation device | Sawbones USA, A Pacific Research Company | SKU:1703-19 | The fixation device for the hip phantom |
Strain gauge sensor | Nippon Liniax Co.,LTD | MFS20-100 | The sensor works with three Wheatstone bridges |
Ultra-Hard C2 Tungsten Carbide Ball, 1 mm Diameter | McMaster-Carr | 9686K81 | Ultra-Hard C2 Tungsten Carbide Ball, 1 mm Diameter |