This protocol describes methods used to examine neural mechanisms underlying sleep-dependent memory consolidation during naps in early childhood. It includes procedures for examining the effect of sleep on behavioral memory performance, as well as the application and recording of both polysomnography and actigraphy.
Sleep is critical for daily functioning. One important function of sleep is the consolidation of memories, a process that makes them stronger and less vulnerable to interference. The neural mechanisms underlying the benefit of sleep for memory can be investigated using polysomnography (PSG). PSG is a combination of physiological recordings including signals from the brain (EEG), eyes (EOG), and muscles (EMG) that are used to classify sleep stages. In this protocol, we describe how PSG can be used in conjunction with behavioral memory assessments, actigraphy, and parent-report to examine sleep-dependent memory consolidation. The focus of this protocol is on early childhood, a period of significance as children transition from biphasic sleep (consisting of a nap and overnight sleep) to monophasic sleep (overnight sleep only). The effects of sleep on memory performance are measured using a visuospatial memory assessment across periods of sleep and wakeful-rest. A combination of actigraphy and parent report is used to assess sleep rhythms (i.e., characterizing children as habitual or non-habitual nappers). Finally, PSG is used to characterize sleep stages and qualities of those stages (such as frequencies and the presence of spindles) during naps. The advantage of using PSG is that it is the only tool currently available to assess sleep quality and sleep architecture, pointing to the relevant brain state that supports memory consolidation. The main limitations of PSG are the length of time it takes to prepare the recording montage and that recordings are typically taken over one sleep bought. These limitations can be overcome by engaging young participants in distracting tasks during application and combining PSG with actigraphy and self/parent-report measures to characterize sleep cycles. Together, this unique combination of methods allows for investigations into how naps support learning in preschool children.
Given sleep's prevalence in our daily routine, it is important to understand its function. Studies with this objective require precise measurement of sleep. Polysomnography (PSG) is the gold-standard measure of sleep. PSG allows for objective, quantitative measurement of sleep with high temporal resolution and can be useful for both research and clinical purposes. PSG is a combination of physiological recordings. At minimum, a PSG montage includes the following measures: electroencephalography (EEG), electrooculography (EOG), and electromyography (EMG). These measures assess electrical potentials from the brain, the eyes, and muscles respectively, and allow for classification of sleep stages (see Figure 1). Other measures, such as electrocardiography (ECG), respiration, and pulse oximetry may be included to identify the presence of disordered sleep.
Figure 1: Example electrode placement and description of activity recorded via PSG. Please click here to view a larger version of this figure.
PSG allows sleep to be characterized into four distinct sleep stages: non-rapid eye movement (non-REM) stage 1 (nREM1; 4−7 Hz), non-REM stage 2 (nREM2; 12−15 Hz), and non-REM stage 3 (more commonly known as slow wave sleep [SWS]; 0.5−4 Hz), and rapid-eye movement (REM) sleep. nREM1 marks sleep onset, and is identified based on reduced muscle tone in the EMG recoding and mixed amplitude EEG oscillations relative to the alpha observed in resting wake. This is followed by nREM2, which can be distinguished by the presence of sleep spindles (short bursts of sigma frequency activity; 11−16 Hz) and K-complexes (single slow-waves that stand out from the surrounding activity) in the EEG. SWS is characterized by distinct slow-frequency high-amplitude EEG oscillations. REM sleep is characterized by fast low-amplitude oscillatory brain activity very similar to that observed during wake. However, what distinguishes REM sleep from wake is that it is also characterized by phasic rapid eye movements (hence the moniker REM) and muscle atonia. Over the course of a sleep bout, sleep stages are experienced cyclically, at a rate of about 90 min/cycle.
Sleep also follows the circadian rhythm, with sleep bouts taking place in 24-h cycles. Sleep timing and consistency may influence sleep function and are also important to assess. Although PSG is necessary to characterize sleep stages, it is time-consuming to apply and therefore not ideal for assessing multiple sleep bouts (e.g., multiple nights of sleep, naps and overnight sleep). For this, actigraphy is beneficial. Actigraphy uses a tri-axial accelerometer, typically on the wrist, to estimate sleep based on the absence of movement. Although actigraphy cannot be used to characterize sleep stages, it has been shown to be reliable at detecting sleep onset and wake onset (including sleep fragmentation or wake after sleep onset) in a range of populations from infants1 to older adults2. Both PSG and actigraphy are preferred methods over self/parent-report measures. Self/parent-report measures are easy to administer and relatively inexpensive, however, they are also subject to bias and non-compliance. Finally, it is worth noting that these methods can be used in combination to capitalize on the strengths of each. For example, PSG can be combined with actigraphy and/or self/parent-report to obtain both overnight sleep quality as well as verification of sleep quantities or sleep-wake cycles, especially over long durations (e.g., weeks or months).
One function of sleep that has garnered particular interest is sleep-dependent memory consolidation, the processing of memories that leaves them stronger and less vulnerable to interference3. Although memory consolidation can take place during wake in children4 and adults5, there is substantial evidence that consolidation is enhanced during sleep. Past research has provided behavioral examples of sleep-dependent memory consolidation by comparing changes in memory performance following an interval of sleep (e.g., 8 pm−8 am) to changes following an equivalent interval spent awake (e.g., 8 am−8 pm). In adults, memories are protected6 or even enhanced7 following an interval of sleep while memories typically decay over an equivalent interval of wake. Controls have been employed that dissociate performance changes from circadian influences8,9,10. For example, similar benefits of sleep are observed when comparing performance over a mid-day nap to an equivalent mid-day wake period9.
Although sleep was once thought to reflect a passive process, simply protecting memories from decay or interference, modern theories suggest sleep plays a more active role and actually promotes memory through reactivations11,12,13. Support for this comes from observed correlations between behavioral measures of memory consolidation over sleep (change in memory recall after sleep compared to before sleep) and specific aspects of sleep physiology. For many declarative memory tasks, memory consolidation is associated with aspects of non-REM sleep, specifically measures of SWS or sleep spindles found in nREM2 and SWS. If sleep's role was passive protection from interference, such a correlation would not be expected; rather a correlation between time asleep (regardless of sleep stage) and performance would be expected, as more time asleep would provide more protection from interference14.
Additional support for the active role of SWS in memory consolidation is evident in studies of targeted memory reactivation. In these studies, a memory is learned in the context of a perceptual cue, for instance an odor, and recall of the memory is greater following sleep if the cue is re-presented during sleep, SWS in particular15. Although the underlying mechanism is debated16,17, one prominent theory, systems consolidation theory, contends that memories encoded in the hippocampus are stabilized in the cortex though hippocampal-neocortical dialogue. Specifically, cortical slow waves and sleep spindles, occurring in conjunction with hippocampal ripples associated with memory reactivation, support the memory transfer3.
The role of sleep in memory consolidation during development is less clear. Early childhood is a period of particular interest as children begin to transition from a biphasic (consisting of a mid-day nap and an overnight sleep bout) to a monophasic sleep pattern. Recent research suggests that this transition may reflect brain maturation18. This argument is consistent with empirical data showing developmental changes in overnight sleep (i.e., topography of slow wave activity) mirrors that of cortical maturation19.
Although there are several behavioral demonstrations of overnight sleep-dependent consolidation in children20,21 and infants22, research on the neural underpinnings of memory consolidation with mid-day sleep are just beginning to be investigated. In ground-breaking work examining the role of mid-day naps on memory in preschool children, naps were shown to protect memories of recently learned information, whereas memory was reduced (by ~12%) when children stayed awake during the nap interval23. This "nap benefit" was greatest in children who napped habitually (i.e., 5 or more times per week as measured with actigraphy) regardless of their age. By recording PSG during the nap, the change in memory performance across the nap period was found to be specifically associated with sleep spindle density (the number of sleep spindles per minute of nREM), suggesting nap quality (not quantity) was a critical factor in promoting memory retention (see the representative results section).
This study highlights the significance of PSG in exploring relations between sleep and memory during development. It points to the importance of characterizing sleep macro- (sleep stages) and micro- (qualities of those stages such as frequencies and the presence of spindles) structures during naps for memory consolidation. It also highlights the importance of assessing sleep rhythms (characterizing children as habitual or non-habitual nappers). Although our work has characterized the function of naps in visuospatial learning (and more recently emotional24 and procedural25 learning), many questions remain. For instance, it will be important to examine other declarative memory tasks to assess the generalizability of these findings and to assess tasks used in preschool classrooms to understand specific parameters (e.g., amount of nap benefit relative to learning) for ecologically valid tasks. Additional work will also be necessary to understand when wake is sufficient for memory consolidation. Thus, our objective is to demystify the process of measuring sleep and sleep-dependent memory consolidation in children. We provide practical tips for examining the benefit of an afternoon nap on declarative memory in typically developing preschoolers (approximately 3 to 4 years of age) using a computerized visuospatial memory task as well as methods for assessing nap habituality using actigraphy, parent-report, and nap physiology using PSG. Although these methods were developed for preschool age children who nap with varying frequency, these methods could be adapted to any age group.
Prior to beginning any research procedures, written consent should be obtained from the parent and verbal consent should be obtained from the child for all study procedures.
NOTE: See Figure 2 for an overview of the procedures.
Figure 2: Overview of protocol. Each square represents one day. Please click here to view a larger version of this figure.
1. Nap promotion condition
2. Wake promotion condition
3. Polysomnography (PSG)
4. Visuospatial memory task
Figure 3: Examples of screen displays during the visuospatial memory task. Please click here to view a larger version of this figure.
5. Actigraphy
6. Data analysis
Using the procedures described here, Kurdziel and colleagues23 examined sleep-dependent memory consolidation during naps in preschool children. Results showed children's recall accuracy on the visuospatial memory task after a nap was better than their recall accuracy after a similar period during which they remained awake (i.e., signifying a "nap benefit", Figure 4). Moreover, those who spent the prior day in the wake condition did not recover memories during overnight sleep. Finally, the actigraphy and parent reported sleep measures were used to examine whether the nap benefit was apparent in both habitual and non-habitual nappers. Findings revealed the nap benefit was only significant in children who napped regularly (i.e., habitual nappers, Figure 5).
Figure 4: Recall accuracy on the visuospatial memory task was tested immediately following encoding ("Immediate"), following the nap opportunity ("Delayed"), and again the following day ("24-hour") across two conditions: a nap-promoted condition (gray bars) and wake-promoted condition (white bars). Error bars represent ± 1 SE. This figure is reprinted with permission from Kurdziel et al.23. Please click here to view a larger version of this figure.
Figure 5: Change in recall accuracy (delayed recall minus immediate recall) across the nap (gray bars) and wake (white bars) intervals for habitual nappers (who took five to seven naps per week) and non-habitual nappers (those who took zero to two naps per week). Error bars represent ± 1 SE. This figure is reprinted with permission from Kurdziel et al.23. Please click here to view a larger version of this figure.
PSG was used to examine relations between sleep physiology and nap-dependent memory consolidation in both habitually and non-habitually napping children. There was a significant negative correlation between immediate recall accuracy and sleep spindle density. The better a child performed at immediate recall, the fewer sleep spindles they displayed during nREM2 sleep (Figure 6A). This is consistent with previous studies which report a negative correlation between sleep spindles and IQ35. Importantly, there was a positive correlation between change in recallnap and sleep spindle density during nREM2 (Figure 6B). However, no other measure of sleep physiology (i.e., spindle amplitude, spindle frequency, etc.) was related to memory performance.
Figure 6: Sleep spindle density (spindles per minute of non-REM stage 2 sleep) associations with (A) immediate recall accuracy and (B) the change in recall accuracy from the immediate to delayed recall phase. This figure is reprinted with permission from Kurdziel et al.23. Please click here to view a larger version of this figure.
In sum, these results show that napping is associated with improved memory consolidation, especially in habitual nappers. Nap-related improvement in memory performance is related to sleep physiology assessed by PSG in early childhood. Therefore, PSG is an important method for understanding the mechanisms that underlie relations between sleep and memory consolidation in early childhood. Together, these results suggest that naps are critical for long-term memory consolidation in children.
This article describes how to investigate sleep-dependent consolidation of declarative memory during naps in early childhood. Methods include behavioral assessment of memory across nap and awake conditions, actigraphy and parent-report to assess sleep cycles, and PSG to assess sleep architecture. This unique combination is critical for assessing memory, characterizing sleep cycles, and examining the neural mechanisms underlying the benefit of sleep on memory. Representative results indicate that learning and memory were dependent on mid-day sleep, particularly for habitual nappers. Specifically, habitual nappers showed a greater benefit from napping compared to staying awake (i.e., nap benefit score). In addition, across all children, better retention across the nap period (i.e., nap change score) was related to sleep spindles recorded during nREM2; greater retention over the nap was associated with more sleep spindles. Although the combination of methods described is critical for full characterization of the impact of sleep on memory, perhaps the most important aspect of this method is identification of underlying neural mechanisms associated with this effect using PSG. At present, PSG is the only methodological tool that allows for characterization of sleep quality via measurement of sleep stages. Thus, it is the only method that allows for insight into neurobiological mechanisms underlying sleep-dependent effects, such as memory consolidation.
Major advantages of PSG include the fact that it is non-invasive and allows for characterization of four sleep stages, including sleep stages nREM 1 −3 and REM. The most critical step in acquiring PSG is thoroughly cleaning electrode sites before application in order to achieve low impedances and subsequent high-quality data to realize this advantage. Another advantage is that PSG is portable and easy to administer, even in young children. Furthermore, the technique can be modified to increase resolution. Although we describe a low-density montage of 7 EEG electrodes, higher density EEG montages using specialized caps in order to examine the topographic distribution of sleep-related activity such as sleep spindles may also be used. This can be useful as topography changes developmentally14; however, these systems are not ambulatory and can be less comfortable. Finally, although we describe how to record PSG during mid-day sleep, the same method can be applied overnight to examine sleep at other periods, including overnight sleep. It can also be modified for clinical use to assess sleep disturbances (i.e., inclusion of ECG, respiration, pulse ox). We describe how data obtained during PSG can be related to sleep-dependent consolidation of declarative memories (i.e., visuospatial memory). However, other types of memory (e.g., procedural memory, emotional memory, language, etc.) and their relation to sleep components can also be examined23,28,25,36,37,38.
The main limitation of PSG is the time it takes to apply the electrodes. In children this can be especially important as they are prone to boredom and limited attention. These effects can be mitigated by providing subjects with distractors during administration (e.g., toys, books, videos). Additionally, PSG typically records activity during one sleep bout. However, it can be combined with self-report and/or actigraphy to obtain insight into sleep quantities or sleep-wake cycles over longer durations (e.g., weeks or months). Finally, PSG can be uncomfortable, and disturb sleep at times. Note that for this reason, an adaptation sleep bout can be considered. This must be weighed against the additional burden placed on the participant and challenges recruiting to the study.
Although PSG is critical for examining the neurobiological mechanisms underlying sleep-dependent effects, proper administration of all other aspects of the protocol described (i.e., behavioral assessment of memory across nap and awake conditions, actigraphy and parent-report of sleep cycles), are paramount to realizing its full potential. The most critical step in administering the nap and wake promotion conditions is to ensure that the time between immediate and delayed recall is the same between conditions and that the interference is minimized during the wake promotion condition. The former can be achieved by adhering to clear protocols and proper documentation of time for each session for each participant. The latter can be achieved by monitoring of the child's activity during the wake condition and providing them, only when necessary, activities that are least likely to interfere (e.g., for the visuospatial memory task that taps declarative memory avoiding activities that engage declarative systems such as books or verbal material).
In conclusion, PSG is the gold-standard assessment of sleep quality. It allows for objective, quantitative measurement of sleep with high temporal resolution that which can be useful to better understand sleep function. When paired with other tools (e.g., behavioral assessment of memory, actigraphy, and parent-report of sleep) it can yield important and interesting findings regarding how sleep contributes to healthy cognitive development of young children.
The authors have nothing to disclose.
The authors would like to thank the Neurocognitive Development Lab at the University of Maryland, College Park and the Somneuro Lab at the University of Massachusetts, Amherst for assistance with this project. Funding was provided by NIH (HD094758) and NSF (BCS 1749280) to TR and RS. Representative results were funded by NIH HL111695.
Actiwatch Spectrum Plus Starter Kit | Philips Respironics | 1109516 | Includes: Actiwatch Spectrum Plus Device, Actiware Software License, and manual |
Actiware software | Philips Respironics | 1114828 | Alternatives may be available. |
Brain Analyzer | Brain Products | BV-BP-170-1000 | Alternatives may be available. |
Dell Latitude 5580 Laptop | Dell | X5580T [210-AKJR] | Laptop for running MatLab, Actiware, and RemLogic as well as storing/uploading data |
EC2 cream | Grass | 12643 | Possible alternatives include Ten20 paste and Lic2 electride cream |
Embla REMLogic software | Natus Medical Inc. | 21475 | Alternatives may be available. |
Embletta MPR PG Sys – XR – US | Natus Medical Inc. | 12077 | Embletta system for PSG recordings |
Embletta MPR ST + Proxy Kit | Natus Medical Inc. | 12696 | Attachment to Embletta to record PSG sensors |
Nuprep cleaning solution | Natus Medical Inc. | 12643 | Possible alternatives may be available. |
Sleep Supplies Starter Kit for Embletta MPR ST/ST + Proxy | Natus Medical Inc. | 12643 | Started kit for sleeping including guaze, EC2 cream, NuPrep cleaning solution, cotton swabs and more. |