This protocol details a procedure in which human neuronal cultures are transduced with lentiviral constructs coding for mutant human tau. Transduced cultures display tau aggregates and associated pathologies.
Aberrant aggregation of the protein tau is pathogenically involved in a number of neurodegenerative diseases, including Alzheimer’s disease (AD). Although mouse models of tauopathy have provided a valuable resource for investigating the neurotoxic mechanisms of aggregated tau, it is becoming increasingly apparent that, due to interspecies differences in neurophysiology, the mouse brain is unsuitable for modeling the human condition. Advances in cell culture methods have made human neuronal cultures accessible for experimental use in vitro and have aided in the development of neurotherapeutics. However, despite the adaptation of human neuronal cell cultures, in vitro models of human tauopathy are not yet widely available. This protocol describes a cellular model of tau aggregation in which human neurons are transduced with lentiviral-derived vectors that code for pathogenically mutated tau fused to a yellow fluorescent protein (YFP) reporter. Transduced cultures produce tau aggregates that stain positively for thioflavin and display markers of neurotoxicity, such as decreased axonal length and increased lysosomal volume. This procedure may be a useful and cost-effective model for studying human tauopathies.
Pathological aggregation of the microtubule-associated protein tau is a defining feature of many neurodegenerative diseases, including AD, frontotemporal dementia (FTD), Pick’s disease, and progressive supranuclear palsy (PSP)1. In a nondiseased state, tau binds to and stabilizes microtubule filaments in neuronal axons2. However, disease-associated hyperphosphorylation of tau promotes tau aggregation, dissociation from microtubules, and neuronal toxicity3. The toxic effects of aggregated tau may involve aberrant activation of cholinergic4 and glutamatergic receptors5 resulting in the dysregulation of intracellular calcium and, eventually, cell death. In animal models, the reduction of brain tau improves pathology in AD mice6 and in mouse models of repetitive mild traumatic brain injury7.
Mounting evidence demonstrates that the structure and binding affinity of mouse-derived tau are distinct from human-derived tau and that mouse tau is unsuitable for modeling human tauopathies8. However, human cell tauopathy models are not widely commercially available. The overall goal of this work is to describe an in vitro model of tau aggregation in which human neurons are transduced with lentiviral-derived vectors containing mutant human tau constructs9. Tau aggregate causing lentiviral constructs encodes for the tau repeat domain harboring P301L and V337M mutations fused to a YFP reporter (Tau-RDLM-YFP) while control constructs code for the wild-type (Wt) tau repeat domain fused to a YFP reporter (Tau-Wt-YFP). Neuronal cultures transduced using this method express approximately nine times more tau than nontransduced cultures. Although the amount of tau expression overexpressed is roughly equal between Tau-RDLM-YFP- and Tau-Wt-YFP-transduced cells, only neurons transduced with Tau-RDLM-YFP display aggregates. Cultures transduced with Tau-RDLM-YFP stain positively for thioflavin and display reductions in axonal length and synaptic density. Therefore, this cellular model may be a useful tool for studying tau aggregation in vitro.
1. Preparation of Media and Reagents
2. Lentiviral Constructs
NOTE: Before beginning work with lentiviral constructs, ensure that the lab has been approved to use biosafety level-2 (BSL-2) agents. Furthermore, BSL-2 culture hoods, personal protective equipment (PPE), and disposal methods must be used when working with lentiviral vectors.
3. Culturing Human Neural Stem Cells
NOTE: NSCs are typically seeded at 100,000–150,000 cells/cm2 and most commercially available NSCs are sold as 1 x 106 cells/vial. This protocol has been optimized for 10 cm cell culture dishes (although other sizes of dishes may be used); therefore, if commercially available NSCs are being used, the NSCs may need to be expanded by first being cultured in six-well dishes in order to result in enough cells to seed 10 cm dishes. This protocol can alternatively be adapted for a variety of cell culture dish sizes (but it does not contain instructions for passaging NSCs as these protocols are available elsewhere11,12).
4. Transduction and Maintenance of Neuronal Cultures
5. Imaging of Cells
6. Optional Methods
Tau-RDLM-YFP-transduced neurons were fluorescently tagged with YFP, and RDLM-transduced cultures displayed aggregates after transduction. These inclusions stained positive for thioflavin (Figure 1). As Figure 1 demonstrates, this protocol produces neuronal cultures that display thioflavin-positive tau aggregates. For initial experiments, it is recommended that neuronal differentiation is confirmed by immunolabeling the neuron-specific marker β-tubulin III in cultures. Importantly, fluorescently tagged secondary antibodies should have an excitation/emission spectrum that does not overlap with that of YPF (Cy3, for example). Although yellow fluorescent tau aggregates will be visible in the absence of staining, thioflavin should also be used for imaging in order to confirm that the fluorescent signal is aggregated tau and not cellular debris. Additionally, the example in Figure 1 does not include DAPI staining to label the cell nuclei as the excitation/emission of DAPI overlaps with that of thioflavin-S; alternative nuclei stains should be used with thioflavin-S if desired.
Figure 1: Thioflavin staining of transduced cultures. Neurons transduced with tau-RDLM-YFP lentivirus were fixed and immunolabeled with the neuron-specific marker β-tubulin III (red). Additionally, tau aggregates (YFP signal in green) were stained for thioflavin (blue). Scale bars = 25 µm. Please click here to view a larger version of this figure.
This protocol describes the generation of an in vitro model of human tauopathy that exhibits silver-stain-positive aggregates and thioflavin-positive neurofibrillary tangles (NFTs). Moreover, transduced cells display tau-induced pathologies such as morphological defects, reduced synaptogenesis, and an increased lysosomal volume. The main advantage of this protocol is that it provides an accessible and cost-effective model of neuronal tauopathy, which can be used for drug screening studies, as well as for the analysis of tau toxicity. This model fills a material need in neurodegenerative research as human tauopathy cell lines are not yet widely available and the use of transgenic tau from mouse-derived neurons requires animal breeding and is limited due to differences in neuronal characteristics between species.
In addition to those listed above, there are a number of critical steps for the success of this procedure. First, ensure that the correct viral titer is used because if the viral titer is too low, cultures will not form aggregates. Second, make sure that NSC cultures are properly maintained and do not exceed ~80% confluence. Overgrowth of NSCs will cause premature differentiation. Last, wait a full 4 weeks for neuronal cultures to differentiate after withdrawing the bFGF media from the NSCs. This duration is necessary to ensure maturation of the neurons.
Although the procedure described above is an efficient method for producing an in vitro tauopathy model, there are some limitations associated with this protocol. First, as described previously, this method produces NFTs in human induced pluripotent stem cell-derived neurons but not in rat embryonic (E18)-derived neurons. Even after using three times more virus to transduce rat neurons than was used for human neurons, rodent cell cultures remained negative for thioflavin staining, which suggests that this method cannot be adapted for rodent cultures. The differences between transduced mouse cells and human neurons may be due to the increased propensity of human tau toward aggregation13. The second limitation of this procedure is that although tau aggregates are formed in cultures, changes in tau phosphorylation between Tau-RDLM-transduced cells and Tau-Wt-YFP-transduced cultures were undetectable using protein PHF-1 (which detects tau phosphorylated at Ser 396/Ser 404) and CP13 antibodies (which detect tau phosphorylated at Ser 202). These findings suggest that tau aggregation in Tau-RDLM-YFP cultures due to P301L and V337M involves a mechanism that is independent of hyperphosphorylation, or the level of endogenous tau phosphorylation is under the detectable level by immunoblot. Because of the lack of differences in PHF-1 and CP13 immunoreactivity between Tau-RDLM-YFP and Tau-Wt-YFP cultures, it is unclear whether or not this model would be useful for studies analyzing the effects of tau kinase/phosphatase activity on pathology. However, both PHF-1 and CP13 antibodies recognize regions outside of the repeat domain harboring the mutations; therefore, additional antibodies raised against various tau phosphorylation sites may be useful for future studies.
In addition to cell culture assays, this model may be a valuable tool for studies beyond the cell culture paradigm. For instance, exosomes isolated from the media of transduced cells contain toxic tau species. Exosomes are small secretory vesicles released from nearly every cell type, and exosomes have been implicated in tau propagation14. Tau-RDLM neuronal exosomes contain human tau which is detectable by western blot9, and these exosomes are sufficient to produce tau inclusions in the naïve mouse brain. These inclusions are immunoreactive for antibodies specific for human tau (K9JA), but it is unclear whether or not the inclusions include aggregated mouse tau. The finding described here that the procedure does not produce thioflavin-positive staining aggregates in rodent neurons suggests that the inclusions observed in the mouse brain are composed entirely of human tau, although future studies are required to confirm the composition of in vivo deposits.
Given the apparent role of exosome-derived tau in tauopathies, the model described here may be a useful resource for examining the role of the exosome in mediating tau-induced neurodegeneration. In conclusion, this procedure produces an in vitro model of human tauopathy that has significant advantages over transgenic mouse neuronal systems and can be employed for a variety of preclinical analyses.
The authors have nothing to disclose.
The authors would like to thank Dr. Peter Davies at Albert Einstein College of Medicine for supplying PHF-1 and CP13 antibodies and Dr. Marc Diamond at the University of Texas, Southwestern, for providing the tau constructs. This work was supported by grants from the Alzheimer’s Association (NIRG-14-322164) to S.H.Y. and from the California Institute for Regenerative Medicine (TB1-01193) to P.R.
10 cm culture dishes | Thermofisher | 12556002 | |
15 ml tubes | Biopioneer | CNT-15 | |
16% paraformaldehyde | Thermofisher | 50-980-487 | |
24 well culture plates | Thermofisher | 930186 | |
50ml tubes | Biopioneer | CNT-50 | |
70% ethanol in spray bottle | Various sources | NA | |
B27 supplement | Thermofisher | 17504044 | |
Basement membrane matrix (Matrigel) | Corning | 356231 | |
Basic FGF | Biopioneer | HRP-0011 | |
Bovine serum albumin | Sigma | A7906 | |
Cell culture incubator | Various sources | NA | |
Centrifuge | Various sources | NA | |
DMEM-F12 culture media with glutamine | Thermofisher | 10565042 | |
Ethanol (50% concentration or higher) | Various sources | NA | |
Flourescently labeled secondary antibodies | Various Sources, experiment dependent | NA | |
Fluorescent microscope | Various sources | NA | |
Glass coverslips | Thermofisher | 1254581 | |
Glass slides | Thermofisher | 12-550-15 | |
Human neural stem cells | Various sources | NA | |
Lentiviral vectors | Various sources | custom order | |
Mounting media | Thermofisher | P36934 | |
N2 supplement | Thermofisher | 17502048 | |
Penicillin-Streptomycin | Thermofisher | 15140122 | |
Phosphate buffered saline | Thermofisher | 14190250 | |
Primary antibodies | Various Sources, experiment dependent | NA | |
Rocking or rotating platform | Various sources | NA | |
Sterile cell culture hood | Various sources | NA | |
Thioflavin S | Sigma | T1892-25G | |
Triton X-100 | Thermofisher | BP151-100 | |
Water bath | Various sources | NA |