Nous décrivons ici le protocole standard pour la détection de l’activité β-galactosidase dans des embryons de souris tout au début et à la méthode paraffine sectionnement et contre-coloration. Il s’agit d’une procédure simple et rapide pour contrôler l’expression des gènes au cours du développement qui peut également être appliquée à des coupes de tissus, organes ou cellules en culture.
Le gène de l’Escherichia coli LacZ , codant la β-galactosidase, est largement utilisé comme reporter pour l’expression des gènes et comme traceur dans les études de lignée de cellules. La réaction classique histochimique est issue de l’hydrolyse du substrat X-gal en combinaison avec les ions ferreux et ferreux, qui produit un précipité insoluble bleu qui est facile à visualiser. Par conséquent, activité β-galactosidase sert de marqueur pour le modèle d’expression du gène d’intérêt à mesure que le développement progresse. Nous décrivons ici le protocole standard pour la détection de l’activité β-galactosidase dans des embryons de souris tout début et la méthode suivante paraffine sectionnement et contre-coloration. En outre, une procédure pour clarifier les embryons entiers est fournie pour mieux visualiser le X-gal de coloration dans les régions plus profondes de l’embryon. Résultats cohérents obtenus à la suite de cette procédure, bien que l’optimisation des conditions de réaction est nécessaire pour réduire l’activité de fond. Limitations lors de l’essai devraient être considérées, notamment quant à la taille de l’embryon dans la coloration entière de support. Notre protocole prévoit un sensible et une méthode fiable pour la détection de la β-galactosidase lors du développement de souris qui peut s’appliquer davantage à la sections cryostat, mais aussi les organes entiers. Ainsi, les patrons d’expression de gène dynamique tout au long du développement peuvent être analysés facilement à l’aide de ce protocole dans les embryons entiers, mais aussi expression détaillée au niveau cellulaire peut être évaluée après le sectionnement de la paraffine.
Afin de décrire des profils d’expression génique spécifique, l’utilisation de gènes marqueurs a été primordiale de drosophile aux mammifères. Dans les expériences impliquant des animaux transgéniques et knock-out, le gène de la β-galactosidase bactérienne (LacZ) d’ Escherichia coli (e. coli) est l’un des plus largement utilisé1,2,3, 4. β-galactosidase (β-gal) catalyse l’hydrolyse des β-galactosides (tels que le lactose) dans son monosaccharides (glucose et galactose)5. Son substrat plus couramment utilisé est le X-gal (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside), un glucoside qui est hydrolysé par une β-galactosidase donnant lieu à 5-bromo-4-chloro-3-hydroxyindole et le galactose. Le premier est oxydé en un dimère qui, lorsqu’il est utilisé combiné avec potassium ferri- et ferro-cyanure, produit une caractéristique insoluble, couleur bleue précipiter (Figure 1)6.
Le gène LacZ ont commencé à être utilisé comme un gène rapporteur il y a plus de trente ans7,8. Habituellement, les LacZ est inséré en aval d’un promoteur endogène à la place de la trame de lecture ouverte, donc il peut être utilisé dans la culture bactérienne et cellule de visualiser les cellules contenant un insert en particulier, ainsi que chez les animaux transgéniques comme traceur d’endogène profils d’expression génique au cours du développement9. À cet égard, la visualisation de l’activité β-galactosidase a été largement utilisée chez la drosophile pour comprendre les processus cellulaires et du développement de cellules individuelles à tissus entiers. Drosophila génétique favorise la génération de lignes stables dans laquelle une construction élément P modifiée contenant le gène rapporteur que lacZ est inséré au hasard des endroits dans le génome. Ainsi, lorsqu’il est placé sous l’influence d’éléments activateurs il peut conduire son expression d’une manière spécifique de tissu, qui a permis l’analyse systématique des modèles expression de nombreux gènes pendant les dernières deux décennies10. En outre, l’utilisation de souris transgéniques pour surveiller l’expression du gène LacZ permet aussi détection des événements de recombinaison du gène par Cre-loxP médiée par recombinaison et localisation des dérivés mutant les cellules souches embryonnaires dans les analyses chimériques 11, qui facilite le contrôle de l’expression de LacZ dans des tissus spécifiques ainsi que dans le temps. En outre, dans les embryons entiers, détection de l’activité β-galactosidase peut-être produire des colorations différentielles à des intensités différentes que l’on peut observer commodément à travers des stades différents de développement pour analyser les changements temporels dans l’expression des gènes 8,,12.
Dans cet article, nous présentons un protocole afin de visualiser l’expression des gènes par le biais de X-gal coloration dans les tissus de support entier aux premiers stades du développement des embryons de souris. Nous présentons cette méthode histochimique comme une technique très sensible et peu coûteuse qui favorise la détection précise des cellules marquées au niveau cellulaire ou dans des échantillons de toute monture après que paraffine encastré de tissus ou embryons. La méthode permet la visualisation directe de la coloration dans les tissus de souris avec le fond minimal par rapport aux autres méthodes de13.
Le gène LacZ d’e. coli a été employé couramment comme reporter dans les études des profils d’expression génique en raison de sa grande sensibilité et de la facilité de détection. Le présent protocole décrit une méthode classique pour la détection des β-gal expression basée sur une réaction enzymatique qui est facile et rapide à jouer aussi bien que bon marché. Cette méthode peut être également appliquée sans modifications majeures dans des embryons de support entier, organes intacts, de…
The authors have nothing to disclose.
Nous tenons à remercier le Service histopathologique pour leur assistance technique à le Cardiovasculares de Centro Nacional de Investigaciones (CNIC). Nous remercions également m. Motoharu Seiki pour bien vouloir fournir Mt4-mmpLacZ souris et Dr Alicia G. Arroyo pour soutenir notre projet et pour sa lecture critique du manuscrit. Nous tenons à remercier Peter Bonney pour la relecture de cet article. Ce travail a été soutenu par l’Universidad Europea de Madrid au moyen d’une subvention (# 2017UEM01) L.C.C.
REAGENTS | |||
2-Propanol | SIGMA-ALDRICH | 24137-1L-R | |
Agarose | SCHARLAU | 50004/ LE3Q2014 | |
Aqueous mounting medium | VECTOR LABS | H-5501 | |
Synthetic mounting media | MERCK | 100579 | |
96% Ethanol | PROLABO | 20824365 | |
99.9% Ethanol absolute | SCHARLAU | ET00021000 | |
50% Glutaraldehyde solution | SIGMA-ALDRICH | G6403-100ml | |
85% Glycerol | MERCK | 104094 | |
99.9% Glycerol | SIGMA-ALDRICH | G5516 | |
Magnesium chloride hexahydrate | SIGMA-ALDRICH | 63064 | |
Nonionic surfactant (Nonidet P-40) | SIGMA-ALDRICH | 542334 | |
Nuclear Fast Red counterstain | SIGMA-ALDRICH | N3020 | |
Paraffin pastilles | MERCK | 111609 | |
Paraformaldehyde | SIGMA-ALDRICH | 158127-500g | |
Phosphate buffered saline (tablets) | SIGMA-ALDRICH | P4417-50TAB | |
Potassium ferrocyanate | MERCK | 1049840500 | |
Potassium ferrocyanide | MERCK | 1049731000 | |
Sodium azide | SIGMA-ALDRICH | S8032 | |
Sodium deoxycholate | SIGMA-ALDRICH | 30970 | |
Sodium dihydrogen phosphate monohydrate | SIGMA-ALDRICH | 106346 | |
Sodium phosphate dibasic dihydrate | SIGMA-ALDRICH | 71638 | |
Thymol | SIGMA-ALDRICH | T0501 | |
Tris hydrochloride (Tris HCl) | SIGMA-ALDRICH | 10812846001 (Roche) | |
X-GAL | VENN NOVA | R-0004-1000 | |
Xylene | VWR CHEMICALS | VWRC28973.363 | |
EQUIPMENT | |||
Disposable plastic cryomolds 15x15x5 mm | SAKURA | 4566 | |
Rotatory Microtome | Leica | RM2235 | |
Cassettes | Oxford Trade | OT-10-9046 | |
Microscope Cover Glasses 24×60 mm | VWR | ECN631-1575 | |
Microscope slides | Thermo Scientific, MENZEL-GLÄSER | AGAA000001#12E | |
Adhesion microscope slides | Thermo Scientific, MENZEL-GLÄSER | J1820AMNZ | |
Flotation Water bath | Leica | HI1210 | |
Disposable Low Profile Microtome Blades | Feather | UDM-R35 | |
Paraffin oven | J.R. SELECTA | 2000205 | |
Wax Paraffin dispenser | J.R. SELECTA | 4000490 | |
Stereomicroscope | Leica | DM500 | |
Polypropylene microcentrifuge tubes 2.0 mL | SIGMA-ALDRICH | T2795 | |
Polypropylene microcentrifuge tubes 1.5 mL | SIGMA-ALDRICH | T9661 | |
Orbital shaker | IKA Labortechnik | HS250 BASIC | |
Stirring Hot Plate | Bibby | HB502 | |
Vortex Shaker | IKA Labortechnik | MS1 | |
Laboratory scale | GRAM | FH-2000 | |
Precision scale | Sartorius | ISO9001 | |
pHmeter | Crison | Basic 20 | |
Optic fiber | Optech | PL2000 |