Summary

Optogenetic de arrastamento de Theta Hippocampal oscilações em comportar-se ratos

Published: June 29, 2018
doi:

Summary

Nós descrevemos o uso de optogenetics e eletrofisiológicas gravações para manipulações seletivas das oscilações de theta hippocampal (5-10 Hz) no comportamento de ratos. A eficácia do arrastamento ritmo é monitorada utilizando o potencial do campo local. Uma combinação de opto – e inibição farmacogenética aborda a leitura eferente de sincronização hippocampal.

Abstract

Dados abrangentes sobre relacionamentos de oscilações de rede neural para comportamento e organização de descarga neuronal em todas as regiões do cérebro chamam para novas ferramentas para manipular seletivamente ritmos cerebrais. Aqui nós descrevemos uma abordagem combina optogenetics de projeção específico com eletrofisiologia extracelular para controle de alta-fidelidade de oscilações de theta hippocampal (5-10 Hz) no comportamento de ratos. A especificidade do arrastamento a optogenetic é conseguida pela segmentação channelrhodopsin-2 (ChR2) à população gabaérgica das células do septo medial, crucialmente envolvidas na geração das oscilações de theta hippocampal, e um local sincronizado ativação de um subconjunto de afferents septal inibitório no hipocampo. A eficácia do controle do ritmo de optogenetic é verificada por um monitoramento simultâneo do campo local potencial (LFP) entre lâmina da área CA1 e/ou de descarga neuronal. Usando esta preparação facilmente implementável mostramos a eficácia de diferentes protocolos de estimulação optogenetic para indução de oscilações de theta e para a manipulação de sua frequência e regularidade. Finalmente, uma combinação do ritmo theta controle com inibição de projeção específico aborda a leitura de aspectos particulares da sincronização hippocampal por regiões eferentes.

Introduction

Atividade neuronal em mamíferos é coordenada por oscilações de rede, que ajudam a transferência de informações dentro e entre regiões cerebrais1,2,3,de4. Ritmos do cérebro incluem oscilações variando de muito lento ( 200 Hz). Um corpo grande da evidência suporta envolvimento das oscilações de rede em funções cerebrais diversas, incluindo cognição5,6,7,8,9,10 , comportamentos inata11,12 , bem como distúrbios neuropsiquiátricos, tais como a doença de Parkinson e epilepsia de14,13,15. Seletivos e temporalmente precisos métodos para manipulação experimental de oscilações de rede são, portanto, essenciais para o desenvolvimento de modelos fisiologicamente plausíveis de sincronização e para estabelecer nexos de causalidade com o comportamento.

Sincronização de rede é mediada por diversos substratos biológicos e processos, variando de identidade molecular de canais iônicos e sua cinética de neuromodulação da excitabilidade e conectividade de rede. O projeto biológico do ritmo geradores16 foi revelado para muitos ritmos cerebrais, aspectos distintos do qual (por exemplo, frequência, amplitude) são muitas vezes provocada pela dinâmica de redes e tipos de células distintas. Por exemplo, interneurônios inibitórios visando o somata das células principais são os jogadores mais importantes em bandas de frequência e cérebro regiões17,18, incluindo theta19,20, gama20 , 21e ondulação (140-200 Hz)22 oscilações. Por sua vez, sincronização de fase de células distantes é assegurada pelo robusto feed-forward sinalização de células piramidais, que redefine o disparo dos interneurônios. Um parâmetro crucial das oscilações, o tamanho da população neuronal sincronizada, está intimamente relacionado com a amplitude da oscilação LFP medidos e, pelo menos para oscilações rápidas, depende a unidade excitatória sobre interneurônios2. Em contraste, oscilações mais lentas, como delta e theta ritmos, são geradas pelos laços reentrantes de longo alcance, formados por córtico-talâmica23,24 e hippocampal-medial septal projeções25, 26,27, respectivamente. Oscilações em tais circuitos são trazidas pelas interações de atrasos de propagação do sinal, respostas excitáveis e sua preferência de frequência em participantes células28,29,30, 31 , 32. projeções inibitórias gabaérgica parvalbumin (PV)-positivo são células do septo medial (MS) para interneurônios no hipocampo25,33, regiões hipocampal e de córtex entorhinal26 essencial para a geração de oscilações de theta no lóbulo temporal. Assim, os mecanismos fisiológicos de oscilações de rede e sincronização neuronal podem ser manipulados usando optogenetics com uma precisão em tempo real.

Célula tipo específico optogenetic manipulações foram aplicadas para estudos das oscilações hippocampal e cortical em vitro34,35,36,37,38 e vivo em30,39,40,41,42,,43,44,45, incluindo funcional investigações de gama5,12,36,46,47,,48,,49,50, 51,52 e ondulação oscilações40,53,54 e sono fusos55,56. Recentemente nós expressa um vírus ChR2 Cre-dependente no MS, uma região chave para a geração do ritmo theta hippocampal, dos ratos PV-Cre. Usando esta preparação, características das oscilações theta hippocampal (frequência e estabilidade temporal) eram controladas por estimulação optogenetic de projeções inibidoras do MS no hipocampo11. Além disso, a estimulação de optogenetic frequência theta de projeções de displasia septo-hippocampal inibitórias evocado ritmo theta durante imobilidade acordada. O optogenetically arrastado Propriedades do ritmo theta exibido das oscilações de theta espontânea no rato na LFP e níveis de atividade neuronal.

As principais características deste protocolo incluem: (1) utilização de uma via inibitória que é fisiologicamente essencial para oscilações de theta espontânea, evitando efeitos inespecíficos na excitabilidade hippocampal; (2) axonal, ou seja, estimulação de projeção específicas para minimizar uma influência directa na não-hippocampal MS eferentes; (3) local theta-rítmica estimulação de luz, garantindo uma mínima interferência direta com dinâmica de displasia septo-hippocampal theta-rítmica e um arrastamento bilateral global das oscilações de theta; (4) paramétrico controle de frequência de oscilações de theta e regularidade; e (5) quantificação de fidelidade de arrastamento com alta resolução temporal usando LFP para permitir a análise quantitativa de causalidade em comportamento de animais. Uma vez que esta preparação essencialmente capitaliza sobre um papel bem conhecido da displasia septo-hippocampal desinibição em theta geração25,30, permite controle robusto sobre vários parâmetros de oscilações de theta no comportamento de ratos. Estudos onde outros menos caminhos investigados e tipos de células, os circuitos de displasia septo-hippocampal foram manipularam38,39,,47,,49,50,51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 mais revelar mecanismos do ritmo theta.

Protocol

PV-Cre bater-nos ratos masculinos59, 10-25 semanas de idade, foram utilizados. Os ratos foram alojados em condições padrão na instalação de animais e mantidos em um ciclo claro/escuro de 12 h. Todos os procedimentos foram realizados em conformidade com as diretrizes nacionais e internacionais e foram aprovados pelas autoridades sanitárias locais (turismo für Natur, Umwelt und Verbraucherschutz, Nordrhein-Westfalen). 1. viral injeção Durante todo o pro…

Representative Results

Direcionamento de ChR2 para células gabaérgica no MS conforme descrito na seção 1 é ilustrado na Figura 2A. Optogenetic estimulação de axônios das células de MS gabaérgica no hipocampo dorsal através de uma fibra óptica que é implantado acima da área CA1 entrains oscilações theta na frequência do estímulo em ipsilateral (Figura 2B) bem como contralateral Hemisfério (Figura 2). Osci…

Discussion

Aqui apresentamos uma metodologia amplamente acessível para arrastar e provocar oscilações theta hippocampal no comportamento animal. Essa abordagem pode ser útil para estudos de funções do ritmo theta no processamento de informações e comportamento. Aspectos críticos deste método incluem: (1) a escolha do opsin e direcionamento de ChR2 de axônios de MS em células do hipocampo, (2) robustas características ópticas e elétricas dos assemblies de matriz fios fibra óptica implantados para garantir estimulaç?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Gostaríamos de agradecer a Maria Gorbati para ajuda especializada com análise de dados e Jennifer Kupferman para comentários sobre o manuscrito. Este trabalho foi apoiado pela Deutsche Forschungsgemeinschaft (DFG; NeuroCure exc 257, TK e AP; Programa prioritário 1665, 1799/1-1(2), programa de Heisenberg, 1799/2-1, AP), a Fundação alemã-israelense de pesquisa científica e desenvolvimento (GIF; Eu-1326-421.13/2015, TK) e o programa de ciência de fronteira humana (HFSP; RGY0076/2012, TK).

Materials

PV-Cre mice The Jackson Laboratory B6;129P2-Pvalbtm1(cre)Arbr/J
Name Company Catalog Number Comments
Surgery
Stereotaxis David Kopf Instruments, Tujunga, CA, USA Model 963 Ultra Precise Small Animal Stereotaxic Instrument
Drill bits, 0.8 mm Bijoutil, Allschwil, Switzerland 49080HM
0.01-1 ml syringe Braun, Melsungen, Germany 9161406V
Sterican cannulas Braun 26 G, 0.45×25 mm BL/LB
Fine and sharp scissors Fine Science Tools Inc., Vancouver, Canada 14060-09
Forceps Fine Science Tools Inc. 11210-10 Dumont AA – Epoxy Coated Forceps
Blunt stainless steel scissors Fine Science Tools Inc. 14018-14
Soldering station Weller Tools GmbH, Besigheim, Germany WSD 81
Erythromycin Rotexmedica GmbH, Trittau, Germany PZN: 10823932 1g Powder for Solution for Infusion
Name Company Catalog Number Comments
Optogenetics
Hamilton pump PHD Ultra, Harvard Apparatus, Holliston, MA, USA model 703008 PHD Ultra Syringe Pump with push/pull mechanism
Hamilton 5 µL Syringe, 26 gauge PHD Ultra, Harvard Apparatus Model 75 RN SYR
Hamilton 5 µL Plunger PHD Ultra, Harvard Apparatus Model 75 RN SYR
Tubing Fisher Scientific, Pittsburgh, USA PE 20 Inner diameter 0.38 mm (.015"), Outer diameter 1.09 mm (.043")
Sterican cannulas Braun, Melsungen, Germany 27 G, 25×0.40 mm, blunt
Precision drill/grinder Proxxon, Wecker, Luxemburg fbs 240/e
Cutting disks Proxxon NO 28812
Cre dependent channelrhodopsin Penn Vector Core, Philadelphia, PA, USA AV-1-18917P Contruct name: AAV2/1.CAGGS.flex.ChR2.tdTomato, titer: 1.42×1013 vg/ml
Cam kinase dependent halorhodopsin Penn Vector Core AV-1-26971P Construct name: eNpHR3.0, AAV2/1.CamKIIa.eNpHR3.0-EYFP.WPRE.hGH, titer: 2.08_1012 vg/ml
Multimode optic fiber ThorLabs, Dachau, Germany FG105LCA 0.22 NA, Low-OH, Ø105 µm Core, 400 – 2400 nm
Ceramic stick ferrule Precision Fiber Products, Milpitas, CA, USA CFLC126 Ceramic LC MM Ferrule, ID 126um
Polishing paper Thorlabs LF3D 6" x 6" Diamond Lapping (Polishing) Sheet
Power meter Thorlabs PM100D Compact Power and Energy Meter Console, Digital 4" LCD
Multimode fiber optic coupler Thorlabs FCMM50-50A-FC 1×2 MM Coupler, 50:50 Split Ratio, 50 µm GI Fibers, FC/PC
Fiberoptic patch cord Thorlabs FG105LCA CUSTOM-MUC custom made, 3 m long, with protective tubing, Tubing: FT030, Connector 1: FC/PC, Connector 2: 1.25mm (LC) Ceramic Ferrule
Sleeve Precision Fiber Products, Milpitas, CA, USA ADAL1 Ceramic Split Mating Sleeve for Ø1.25 mm (LC/PC) Ferrules
473 nm DPSS laser Laserglow Technologies, Toronto, ON, Canada R471005FX LRS-0473 Series
593 nm DPSS laser Laserglow Technologies R591005FX LRS-0594 Series
MC_Stimulus II Multichannel Systems, Reutlingen, Germany STG 4004
Impedance conditioning module Neural microTargeting worldwide, Bowdoin, USA ICM
Name Company Catalog Number Comments
Electrophysiology
Tungsten wires California Fine Wire Company, Grover Beach, CA, USA CFW0010954 40 µm, 99.95%
Capillary tubing Optronics 1068150020 ID: 100.4 µm
Omnetics nanoconnector Omnetics Connector Corporation, Minneapolis, USA A79038-001
Screws Bilaney, Düsseldorf, Germany 00-96×1/16 stainless-steel
Silicone probe NeuroNexus Technologies, Ann Arbor, MI, USA B32
Headstage Neuralynx, Bozeman, Montana USA HS-8 miniature headstage unity gain preamplifiers
Silver conductive paint Conrad electronics, Germany 530042
Liquid flux Felder GMBH Löttechnik, Oberhausen, Germany Lötöl ST DIN EN 29454.1, 3.2.2.A (F-SW 11)
LED Neuralynx HS-LED-Red-omni-10V
Name Company Catalog Number Comments
Software
MATLAB Mathworks, Natick, MA, USA
MC_Stimulus software Multichannel, Systems
Neurophysiological Data Manager NDManager, http://neurosuite.sourceforge.net
Klusters http://neurosuite.sourceforge.net, Hazan et al., 2006
Software of the recording system Neuralynx Cheetah https://neuralynx.com/software/cheetah
Multi-channel data analysis software Cambridge Electronic Design Limited, Cambridge, GB Spike2

References

  1. Salinas, E., Sejnowski, T. J. Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci. 2 (8), 539-550 (2001).
  2. Buzsaki, G., Wang, X. J. Mechanisms of gamma oscillations. Annu Rev Neurosci. 35, 203-225 (2012).
  3. Cannon, J., et al. Neurosystems: brain rhythms and cognitive processing. Eur J Neurosci. 39 (5), 705-719 (2014).
  4. Fries, P. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci. 32, 209-224 (2009).
  5. Cardin, J. A., et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature. 459 (7247), 663-667 (2009).
  6. Colgin, L. L., et al. Frequency of gamma oscillations routes flow of information in the hippocampus. Nature. 462 (7271), 353-357 (2009).
  7. Csicsvari, J., Jamieson, B., Wise, K. D., Buzsaki, G. Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron. 37 (2), 311-322 (2003).
  8. Gray, C. M., Singer, W. Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci U S A. 86 (5), 1698-1702 (1989).
  9. Lisman, J. E., Jensen, O. The theta-gamma neural code. Neuron. 77 (6), 1002-1016 (2013).
  10. Sirota, A., et al. Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm. Neuron. 60 (4), 683-697 (2008).
  11. Bender, F., et al. Theta oscillations regulate the speed of locomotion via a hippocampus to lateral septum pathway. Nat Commun. 6, 8521 (2015).
  12. Carus-Cadavieco, M., et al. Gamma oscillations organize top-down signalling to hypothalamus and enable food seeking. Nature. 542 (7640), 232-236 (2017).
  13. Bragin, A., Engel, J., Wilson, C. L., Fried, I., Buzsaki, G. High-frequency oscillations in human brain. Hippocampus. 9 (2), 137-142 (1999).
  14. Wang, J., et al. High-frequency oscillations in Parkinson’s disease: spatial distribution and clinical relevance. Mov Disord. 29 (10), 1265-1272 (2014).
  15. Hammond, C., Bergman, H., Brown, P. Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci. 30 (7), 357-364 (2007).
  16. Buzsaki, G. Theta oscillations in the hippocampus. Neuron. 33 (3), 325-340 (2002).
  17. Gulyas, A. I., et al. Hippocampal pyramidal cells excite inhibitory neurons through a single release site. Nature. 366 (6456), 683-687 (1993).
  18. Buhl, E. H., et al. Physiological properties of anatomically identified axo-axonic cells in the rat hippocampus. J Neurophysiol. 71 (4), 1289-1307 (1994).
  19. Wulff, P., et al. Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin-positive interneurons. Proc Natl Acad Sci U S A. 106 (9), 3561-3566 (2009).
  20. Korotkova, T., Fuchs, E. C., Ponomarenko, A., von Engelhardt, J., Monyer, H. NMDA receptor ablation on parvalbumin-positive interneurons impairs hippocampal synchrony, spatial representations, and working memory. Neuron. 68 (3), 557-569 (2010).
  21. Buhl, D. L., Harris, K. D., Hormuzdi, S. G., Monyer, H., Buzsaki, G. Selective impairment of hippocampal gamma oscillations in connexin-36 knock-out mouse in vivo. J Neurosci. 23 (3), 1013-1018 (2003).
  22. Racz, A., Ponomarenko, A. A., Fuchs, E. C., Monyer, H. Augmented hippocampal ripple oscillations in mice with reduced fast excitation onto parvalbumin-positive cells. J Neurosci. 29 (8), 2563-2568 (2009).
  23. Contreras, D., Steriade, M. Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. J Neurosci. 15 (1 Pt 2), 604-622 (1995).
  24. Herrera, C. G., et al. Hypothalamic feedforward inhibition of thalamocortical network controls arousal and consciousness. Nat Neurosci. 19 (2), 290-298 (2016).
  25. Freund, T. F., Antal, M. GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature. 336 (6195), 170-173 (1988).
  26. Unal, G., Joshi, A., Viney, T. J., Kis, V., Somogyi, P. Synaptic Targets of Medial Septal Projections in the Hippocampus and Extrahippocampal Cortices of the Mouse. J Neurosci. 35 (48), 15812-15826 (2015).
  27. Hangya, B., Borhegyi, Z., Szilagyi, N., Freund, T. F., Varga, V. GABAergic neurons of the medial septum lead the hippocampal network during theta activity. J Neurosci. 29 (25), 8094-8102 (2009).
  28. Bartho, P., et al. Ongoing network state controls the length of sleep spindles via inhibitory activity. Neuron. 82 (6), 1367-1379 (2014).
  29. Giocomo, L. M., et al. Grid cells use HCN1 channels for spatial scaling. Cell. 147 (5), 1159-1170 (2011).
  30. Stark, E., et al. Inhibition-induced theta resonance in cortical circuits. Neuron. 80 (5), 1263-1276 (2013).
  31. Crandall, S. R., Cruikshank, S. J., Connors, B. W. A corticothalamic switch: controlling the thalamus with dynamic synapses. Neuron. 86 (3), 768-782 (2015).
  32. Steriade, M., McCormick, D. A., Sejnowski, T. J. Thalamocortical oscillations in the sleeping and aroused brain. Science. 262 (5134), 679-685 (1993).
  33. Joshi, A., Salib, M., Viney, T. J., Dupret, D., Somogyi, P. Behavior-Dependent Activity and Synaptic Organization of Septo-hippocampal GABAergic Neurons Selectively Targeting the Hippocampal CA3 Area. Neuron. , (2017).
  34. Schlingloff, D., Kali, S., Freund, T. F., Hajos, N., Gulyas, A. I. Mechanisms of sharp wave initiation and ripple generation. J Neurosci. 34 (34), 11385-11398 (2014).
  35. Craig, M. T., McBain, C. J. Fast gamma oscillations are generated intrinsically in CA1 without the involvement of fast-spiking basket cells. J Neurosci. 35 (8), 3616-3624 (2015).
  36. Pastoll, H., Solanka, L., van Rossum, M. C., Nolan, M. F. Feedback inhibition enables theta-nested gamma oscillations and grid firing fields. Neuron. 77 (1), 141-154 (2013).
  37. Akam, T., Oren, I., Mantoan, L., Ferenczi, E., Kullmann, D. M. Oscillatory dynamics in the hippocampus support dentate gyrus-CA3 coupling. Nat Neurosci. 15 (5), 763-768 (2012).
  38. Mattis, J., et al. Frequency-dependent, cell type-divergent signaling in the hippocamposeptal projection. J Neurosci. 34 (35), 11769-11780 (2014).
  39. Vandecasteele, M., et al. Optogenetic activation of septal cholinergic neurons suppresses sharp wave ripples and enhances theta oscillations in the hippocampus. Proc Natl Acad Sci U S A. 111 (37), 13535-13540 (2014).
  40. Stark, E., et al. Pyramidal cell-interneuron interactions underlie hippocampal ripple oscillations. Neuron. 83 (2), 467-480 (2014).
  41. Blumberg, B. J., et al. Efficacy of nonselective optogenetic control of the medial septum over hippocampal oscillations: the influence of speed and implications for cognitive enhancement. Physiol Rep. 4 (23), (2016).
  42. Courtin, J., et al. Prefrontal parvalbumin interneurons shape neuronal activity to drive fear expression. Nature. 505 (7481), 92-96 (2014).
  43. Nagode, D. A., Tang, A. H., Yang, K., Alger, B. E. Optogenetic identification of an intrinsic cholinergically driven inhibitory oscillator sensitive to cannabinoids and opioids in hippocampal CA1. J Physiol. 592 (1), 103-123 (2014).
  44. Bitzenhofer, S. H., et al. Layer-specific optogenetic activation of pyramidal neurons causes beta-gamma entrainment of neonatal networks. Nat Commun. 8, 14563 (2017).
  45. Kondabolu, K., et al. Striatal cholinergic interneurons generate beta and gamma oscillations in the corticostriatal circuit and produce motor deficits. Proc Natl Acad Sci U S A. 113 (22), E3159-E3168 (2016).
  46. Sohal, V. S., Zhang, F., Yizhar, O., Deisseroth, K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature. 459 (7247), 698-702 (2009).
  47. Pina-Crespo, J. C., et al. High-frequency hippocampal oscillations activated by optogenetic stimulation of transplanted human ESC-derived neurons. J Neurosci. 32 (45), 15837-15842 (2012).
  48. Iaccarino, H. F., et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature. 540 (7632), 230-235 (2016).
  49. Kim, H., Ahrlund-Richter, S., Wang, X., Deisseroth, K., Carlen, M. Prefrontal Parvalbumin Neurons in Control of Attention. Cell. 164 (1-2), 208-218 (2016).
  50. Lu, Y., et al. Optogenetically induced spatiotemporal gamma oscillations and neuronal spiking activity in primate motor cortex. J Neurophysiol. 113 (10), 3574-3587 (2015).
  51. Kim, T., et al. Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations. Proc Natl Acad Sci U S A. 112 (11), 3535-3540 (2015).
  52. Siegle, J. H., Pritchett, D. L., Moore, C. I. Gamma-range synchronization of fast-spiking interneurons can enhance detection of tactile stimuli. Nat Neurosci. 17 (10), 1371-1379 (2014).
  53. Gan, J., Weng, S. M., Pernia-Andrade, A. J., Csicsvari, J., Jonas, P. Phase-Locked Inhibition, but Not Excitation, Underlies Hippocampal Ripple Oscillations in Awake Mice In. Neuron. 93 (2), 308-314 (2017).
  54. van de Ven, G. M., Trouche, S., McNamara, C. G., Allen, K., Dupret, D. Hippocampal Offline Reactivation Consolidates Recently Formed Cell Assembly Patterns during Sharp Wave-Ripples. Neuron. 92 (5), 968-974 (2016).
  55. Kim, A., et al. Optogenetically induced sleep spindle rhythms alter sleep architectures in mice. Proc Natl Acad Sci U S A. 109 (50), 20673-20678 (2012).
  56. Latchoumane, C. V., Ngo, H. V., Born, J., Shin, H. S. Thalamic Spindles Promote Memory Formation during Sleep through Triple Phase-Locking of Cortical, Thalamic, and Hippocampal Rhythms. Neuron. 95 (2), 424-435 (2017).
  57. Robinson, J., et al. Optogenetic Activation of Septal Glutamatergic Neurons Drive Hippocampal Theta Rhythms. J Neurosci. 36 (10), 3016-3023 (2016).
  58. Fuhrmann, F., et al. Locomotion, Theta Oscillations, and the Speed-Correlated Firing of Hippocampal Neurons Are Controlled by a Medial Septal Glutamatergic Circuit. Neuron. 86 (5), 1253-1264 (2015).
  59. Hippenmeyer, S., et al. A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol. 3 (5), e159 (2005).
  60. Resendez, S. L., et al. Visualization of cortical, subcortical and deep brain neural circuit dynamics during naturalistic mammalian behavior with head-mounted microscopes and chronically implanted lenses. Nat Protoc. 11 (3), 566-597 (2016).
  61. Armstrong, C., Krook-Magnuson, E., Oijala, M., Soltesz, I. Closed-loop optogenetic intervention in mice. Nat Protoc. 8 (8), 1475-1493 (2013).
  62. Buzsaki, G., et al. Multisite recording of brain field potentials and unit activity in freely moving rats. J Neurosci Methods. 28 (3), 209-217 (1989).
  63. Vandecasteele, M., et al. Large-scale recording of neurons by movable silicon probes in behaving rodents. J Vis Exp. (61), e3568 (2012).
  64. Hazan, L., Zugaro, M., Buzsaki, G. Klusters, NeuroScope, NDManager: a free software suite for neurophysiological data processing and visualization. J Neurosci Methods. 155 (2), 207-216 (2006).
  65. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci. 8 (9), 1263-1268 (2005).
  66. Korotkova, T., et al. Reconciling the different faces of hippocampal theta: The role of theta oscillations in cognitive, emotional and innate behaviors. Neurosci Biobehav Rev. , (2017).
  67. Vertes, R. P., Hoover, W. B., Viana Di Prisco, G. Theta rhythm of the hippocampus: subcortical control and functional significance. Behav Cogn Neurosci Rev. 3 (3), 173-200 (2004).
  68. Hasselmo, M. E., Hay, J., Ilyn, M., Gorchetchnikov, A. Neuromodulation, theta rhythm and rat spatial navigation. Neural Netw. 15 (4-6), 689-707 (2002).
  69. Witt, A., et al. Controlling the oscillation phase through precisely timed closed-loop optogenetic stimulation: a computational study. Front Neural Circuits. 7, 49 (2013).
  70. Korotkova, T., Ponomarenko, A. . In Vivo Neuropharmacology and Neurophysiology. , (2017).
  71. Dannenberg, H., et al. Synergy of direct and indirect cholinergic septo-hippocampal pathways coordinates firing in hippocampal networks. J Neurosci. 35 (22), 8394-8410 (2015).
  72. Pikovsky, A., Rosenblum, M., Kurths, J. . Synchronization: A universal concept in nonlinear sciences. 70, (2002).
  73. Boyce, R., Glasgow, S. D., Williams, S., Adamantidis, A. Causal evidence for the role of REM sleep theta rhythm in contextual memory consolidation. Science. 352 (6287), 812-816 (2016).

Play Video

Cite This Article
Bender, F., Korotkova, T., Ponomarenko, A. Optogenetic Entrainment of Hippocampal Theta Oscillations in Behaving Mice. J. Vis. Exp. (136), e57349, doi:10.3791/57349 (2018).

View Video