Here we present a protocol to isolate mouse pancreatic islet cells for screening the ROS inductions by the xenobiotics in order to identify the potential diabetogenic xenobiotic chemicals.
Exposure to certain environmental chemicals in human and animals has been found to cause cellular damage of the pancreatic β cells which will lead to the development of type 2 diabetes mellitus (T2DM). Although the mechanisms for the chemical-induced β cell damage were unclear and likely to be complex, one recurring finding is that these chemicals induce oxidative stress leading to the generation of excessive reactive oxygen species (ROS) which induce damage to the β cell. To identify potential diabetogenic environmental chemicals, we isolated pancreatic islet cells from C57BL/6 mice and cultured islet cells in 96-well cell culture plates; then, the islet cells were dosed with chemicals and the ROS generation was detected by 2′,7′-dichlorofluorescein (DCFH-DA) fluorescent dye. Using this method, we found that bisphenol A (BPA), Benzo[a]pyrene (BaP), and polychlorinated biphenyls (PCBs), could induce high levels of ROS, suggesting that they may potentially induce damage in islet cells. This method should be useful for screening diabetogenic xenobiotics. In addition, the cultured islet cells may also be adapted for in vitro analysis of chemical-induced toxicity in pancreatic cells.
Increases in the prevalence of T2DM have become a global health crisis in recent years posing a serious threat to public health1. Many factors have been found to be causally linked to the development of T2DM, among which, recurring findings suggest that one common convergent point for these factors is the induction of oxidative stress which leads to the generation of excessive ROS2,3.
A wide spectrum of environmental chemicals including PCBs, dioxins, and BaP has been found to induce oxidative stress, which may impair the function of pancreatic β cells and lead to insulin resistance and T2DM4. Although the physiological level of ROS plays an important role in cellular functions, exposure to ROS that exceeds the capacity of the antioxidant system results in the damage to cells/tissues and leads to diseases5. Pancreatic β cells express a low level of antioxidant enzyme, and thus are a sensitive target for the oxidative stress-mediated damage6,7. Chronic exposure to high levels of ROS has been shown to cause stress-induced pancreatic cell dysfunction5 as well as insulin resistance in the liver and adipose tissue8.
The overall goal of this project is to develop a cell-based assay to screen chemicals for their diabetogenic potentials based on their induction of ROS in pancreatic cells. The pancreas lacks metabolic detoxification and is a sensitive target for xenobiotic-induced damage6,7. Therefore, by directly measuring the ROS generated in the pancreatic cells, this assay should provide a direct approximation of the chemical-induced injury in the pancreas. To develop this method, we isolated mouse pancreatic islets, cultured the isolated islet under cell culture condition with chemicals, and utilized the chemical-induced ROS generation as the readout. This procedure is simple and effective in identifying ROS-inducing chemicals in the isolated islet; it can be further developed for investigation of the mechanisms of toxicity that are specific to the pancreas in vitro.
All animal experiments were executed in compliance with all relevant guidelines, regulations and regulatory agencies. The protocol being demonstrated was performed under the guidance and approval of the Institutional Animal Care and Use Committee (IACUC) of the Texas A&M Institute for Genomic Medicine.
1. Solution Preparation
2. Surgical Preparation
3. Pancreas Perfusion and Removal
4. Pancreas Digestion
5. Purification of Islets
6. Plating and Treatment of Islet Cells
7. ROS Staining and Measurement
A micrograph of the healthy Isolated islet is shown in Figure 2, in which islets have a round or oval shape with relatively uniform size (although size uniformity can vary from strain to strain). We next investigated the pancreatic islet functions in an in vitro assay by isolating the islet and stimulating the insulin secretion in the culture islets. Figure 3 shows our typical analysis of the GSIS assay from C57BL/6 mouse isolated islets induced by 3.3 mM and 16.7 mM glucose9.
Using the plate format screen method, we have identified several xenobiotics that caused significant induction of ROS in islet cells (Figure 4). We treated the isolated islets with different chemicals for 12 h and found that Atrazine, BPA, BaP, and PCB126, and β-estrogen could cause significant induction of ROS in the isolated islets10,11,12,13.
Although ROS is not equal to the diabetogenic induction, there is ample evidence indicating the important role of ROS in causing damage to the physiological functions of pancreatic β cells, which leads to T2DM8. Therefore, the value of the work is to identify these ROS inducing chemical as the initial screen. Furthermore, the compounds identified can be further analyzed in vitro in the isolated pancreatic islet cell culture system described in the manuscript. We have shown the effects of ROS-inducing xenobiotics on glucose-stimulating insulin secretion of the isolated islets, which briefly provide diabetogenic data for these tested compounds. Pancreatic islets pre-treated with PCB126 and BPA showed a significant decrease in insulin secretion than the control group (Figure 5).
Figure 1: Procedure of mouse pancreas perfusion. The procedure consists of the following steps: (1) Find the ampulla and use two pairs of curved forceps to clamp the ampulla. (2) Insert the needle through the common bile. (3) Slowly inject 3 mL of collagenase solution stock in the 5 mL syringe. (4) Collect the distended pancreas starting from the duodenum.
Figure 2: Isolated mouse islets. Isolated mouse pancreatic islets in culture medium are shown. Scale bar of 500 µm.
Figure 3: Glucose-stimulated insulin secretion of isolated pancreatic islets. Dose-dependent glucose-stimulated insulin secretion (1, 3.3, and 16.7 mM, treated for 15 min) was measured in isolated islets (average 5 islets per well), using a mouse insulin ELISA kit. Error bars show standard deviations. *p <0.05.
Figure 4: Induction of ROS by xenobiotics in isolated islets from C57BL/6 mice. (A) Isolated islets were treated for 12 h and stained with fluorescence dye 2',7'-dichlorofluorescein (DCFH-DA) for 1 h. The fluorescence was determined by a fluorescence plate reader. (B) The chemical-induced ROS were quenched by NAC (5 mM). (AFB1: 3 µM, Atrazine: 100 µM, BaP: 10 µM, BPA: 100 µM, PCB126: 10 µM, Nonylphenol, BPA: 100 µM, and NAC: 5 mM). Error bars show standard deviations. *p <0.05. Please click here to view a larger version of this figure.
Figure 5: Xenobiotic effects on glucose-stimulated insulin secretion of isolated islets. Isolated islets were pre-treated with PCB126, β-estrogen, and BPA (4 h) and kept in islet culture medium for 1 h. The supernatant of the islets was collected for measurement of insulin by a commercially available mouse insulin ELISA assay. Error bars show standard deviations. *p <0.05.
Accumulating evidence suggests that exposure to environmental chemicals plays an important role in the development of T2DM. Xenobiotics-induced ROS has been recognized as a potential etiological factor contributing to the development of T2DM. Humans are exposed to a wide range of xenobiotic chemicals and there is a great need for novel research techniques to effectively identify the pancreatic toxicants and to investigate the mechanism of toxicity specific to the pancreatic cells.
In this study, based on published procedures14, we have developed a protocol to isolate pancreatic islets from mouse and screen the cells with xenobiotic chemicals for oxidative stress-induced damage to the pancreatic cells. We also use this procedure to investigate the pancreatic specific toxic responses induced by the xenobiotic compounds. To obtain the pancreas from mouse, we prefer to use avertin over other anesthesia because it does not alter the blood glucose levels and does not affect the vasculature of the pancreas15,16,17. We found that the density gradient centrifugation step is critical for isolation of the islet with high purity. Care should be taken to obtain the distinct layer between the polysucrose/sodium and isolation buffer phase to obtain a pure islets sample, devoid of debris and exocrine cells/tissues. The method can be used for in vitro analysis of environmental chemical effects on pancreatic islet physiology, such as the GSIS assay (as shown in Figure 3). The islets should be carefully dispersed with repeated pipetting into separate cells to ensure uniformed cell number in the 96-cell culture plate. The method described here combined the isolation of the islet and a rapid assay for ROS generation and therefore, is a simple and effective initial screen for potential pancreas-damaging chemicals.
We used insulin secretion in response to glucose challenge to confirm the identity of the isolated pancreatic islets. The procedure is highly adaptable for analysis of changes in parameters, including insulin secretion (Figure 3) and cAMP generation, in response to xenobiotic treatments18.
The authors have nothing to disclose.
This work was supported by a pilot project grant from CREH center sponsored by NIEHS and by National Natural Science Foundation of China (No. 31572626).
10×Hank’s balanced salt solution | GIBCO | 14185-052 | |
Collagenase Type 4 | Worthington Biochemical Corporation | CLS-4 | |
polysucrose/sodium diatrizoate solution | Sigma | 10771 | |
2’,7’-dichlorofluorescein (DCFH-DA) | Sigma | D6883-50MG | |
fluorescence microplate reader | Biotek | ||
L-glutamine | Sigma | G8540-25G | |
streptomycin | GIBCO | 15140148 | |
FBS | GIBCO | 26140079 | |
RPMI 1640 | GIBCO | 11875-085 | |
avertin | Sigma | T48402-25G | |
Rat/Mouse Insulin ELISA Kit | Millipore | EZRMI-13K | |
Centrifuge | Sorval | Sorval RT7 | for 96-well plate centrifuge |
Microplate reader | Biotek | Epoch 2 | for fluorescence reading |