Summary

用于有机光电器件降解测试的3维印制腔

Published: August 10, 2018
doi:

Summary

在这里, 我们提出一个设计, 制造和使用一个简单的, 通用的 3 d 印刷和控制大气室的协议, 用于光学和电气特性的空气敏感有机光电器件。

Abstract

在这篇手稿中, 我们概述了制造一个小型, 便携, 易于使用的大气室的有机和钙钛矿光电器件, 使用 3 d-印刷。由于这些类型的设备对湿气和氧气敏感, 这样的房间可以帮助研究人员在表征电子和稳定的性质。该会议厅的目的是作为一个临时的, 可重用的, 稳定的环境与控制的性质 (包括湿度, 气体介绍, 和温度)。它可用于保护空气敏感材料, 或以控制的方式将其暴露于污染物中以进行降解研究。为了表征室的性质, 我们概述了一个简单的程序, 以确定的水汽传输速率 (WVTR) 使用相对湿度的测量标准湿度传感器。这个标准操作程序, 使用50% 加密密度聚乳酸 (PLA), 导致一个房间, 可以使用几个星期没有任何重大损失的设备属性。该分庭的通用性和易用性使其能够适应任何需要紧凑控制气氛的特征条件。

Introduction

基于π共轭半导体有机分子和 organometal 卤化物的有机和钙钛矿光电器件、太阳能电池和发光二极管是一个快速发展的研究领域。有机发光二极管 (oled) 已经是照明和显示1的主要技术元素, 有机光伏已经开始实现效率, 使它们与非晶硅2竞争。近年来, 以钙钛矿为基础的光吸收和发光器件的快速发展345表明, 低成本、易于加工的设备可能很快就会发现广泛的部署。然而, 所有这些技术都受到大气污染物的敏感性, 特别是湿气和氧气, 这限制了它们有效寿命6789

对于研究此类系统的研究人员来说, 有一个适应性强、易于使用、便携和可重用的腔室来保护这些敏感材料或以控制方式1011将其暴露在污染物中是有用的。尽管可以使用 glovebox 对空气敏感器件进行表征, 但这些大型、昂贵和固定位置的惰性环境可能与可能需要的范围广泛的特性不相容。提供一个可移植的替代品, 里斯10提出了一种基于标准真空法兰的小金属腔, 适用于有机器件的电学和光学特性表征。我们已经适应了这一设计, 使它更便宜, 更多才多艺, 通过使用 3 d 印刷生产室组件。使用 3 d 印刷, 而不是加工, 允许快速, 经济划算的调整, 以改变样品或环境要求, 同时保持基本设计的效用。在这项贡献中, 我们概述了制作这样一个腔室的程序, 并用它来提取有机二极管器件的电流-电压特性。

有机和钙钛矿设备的良好封装应该有 WVTRs 10-3 -10-6克/米2/天的长期设备稳定性12,13, 以确保很少水进入有机设备, 即使在非常苛刻的条件。由于本会议厅被设计为测试目的的受控环境, 而不是长期贮存或封装方法, 因此对有效分庭的要求并不严格。分室应能够在合理的时间内维持设备的性能, 以进行表征实验。使用 PLA 的标准操作程序结果在一个房间, 可以使用数天甚至几周的合并气体流量, 没有重大损失的设备属性。

改变材料, 甚至是腔体的形状和大小, 都会严重影响污染物从空气中渗透到室内。因此, 需要仔细监测水分和氧气的进入, 以确定燃烧室的功效。此外, 我们还制作了分庭, 概述了一个简单的程序, 以确定 WVTR 的房间, 使用商用湿度传感器, 建立一个时间表, 使用的会议厅进行试验。

这样一个简单, 但多才多艺的房间允许进行多种类型的实验。它们可以充当 glovebox 外的惰性大气环境, 适合通过电气馈端口和窗口进行电气和光学特性的表征。它们的可移植性使它们能够与实验室以外的标准电气特性设备一起使用, 这在测试可靠性14或获得设备的认证测量方面是有用的。性能15。这些分庭对于研究引入污染物对受控降解试验的影响, 以及简单的修改, 也特别有用。使用3D 打印可以显著、快速地适应更改设备布局、大小或测试要求。

Protocol

1. 3D 打印室零件 注: 所有打印机准备、”切片器” 软件设置和打印参数都特定于材料表中所示的打印机。有一组广泛的3D 打印机, 每个都有自己的准备步骤和最佳参数。还有一个广泛的颜色阵列的聚合物灯丝用于印刷零件。每个零件不需要使用相同的塑料。 根据所需的房间配置选择相应的. stl 文件。注意: 这些配置在图 1中详细说明,…

Representative Results

电流-电压测量: 本会议厅旨在允许对空气敏感二极管装置 (如有机或钙钛矿太阳能电池或发光二极管) 进行测试。它可以作为一种可重用的临时封装, 或者作为引入污染物来执行受控降解测试的方法。这里所示的电流密度-电压 (合资) 曲线是用 ZIF 测试板 (即无光照) 和光照条件来测量的, 以提取基本二极管特性…

Discussion

重新创建这个实验的关键步骤包括印刷分庭, 以避免裂缝, 缝隙, 或不良的填充特性, 可以减少 WVTR, 密封的房间, 以防止任何水分和氧气的入口收紧 KF50 钳在顶部和底部腔之间实现完全密封, 使用真空额定的低压环氧树脂围绕触头或任何贯穿件可, 以防止任何泄漏, 并使用适当的 O 形环放置在试样和顶腔之间创建密封, 并足够的压力, 拧紧固定环上的螺钉以防止泄漏, 而不开裂试样。O 形环应完全适合于…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者承认彼得 Jonosson 和里昂新的媒介中心为3D 打印分庭。这项研究得到了 436100-2013 RGPIN, ER15-11-123, 工程优秀本科生暑期研究奖的麦克马斯特院长和本科生研究机会计划的支持。

Materials

ORION DELTA DESKTOP 3D PRINTER RTP SeeMeCNC 87999 Known in Report As: 3D Printer
1.75 mm PLA Filament SeeMeCNC 50241 Known in Report As: PLA
Somos® WaterShed XC 11122 chamber Somos printed at Custom Prototypes, Toronto. https://www.dsm.com/products/somos/en_US/products/offerings-somos-water-shed.html
Known in Report As: Water resistant polymer
CURA CURA https://ultimaker.com/en/products/cura-software
Known in Report As: slicing software
Soldering iron with 600° F tip Weller WTCPT
Xtralien X100 Source Measure Unit Ossila E561 Known in Report As: SMU
ZIF Test Board for Pixelated Anode Substrates Ossila E221 Known in Report As: Zero insetion force/ZIF Test Board;
BNC Cable
Generic USB A – B
Generic USB A – Micro
#12 O-Ring Source unkown
Known in Report As: o-ring
116 Butyl O-Ring Global Rubber Products 116 VI70 Bought in-store
Known in Report As: o-ring
Retaining ring McMaster NA 3D printed in-house
Bottom Chamber McMaster NA 3D printed in-house
Top Chamber McMaster NA 3D printed in-house
KF50 Cast Clamp (Aluminum) Kurt J. Lesker QF50-200-C
KF50 Centering Ring (Aluminum) Kurt J. Lesker QF50-200-BRB
Sn60/Pb40 Solder MG Chemicals 4895-2270
#4-40 x 3/16" machine screw Hardware store
#4-40 IntThrd Brass TaperSingleVane Insert For Thermoplastic Fastenal 11125984 Fastenal requires to be affiliated with company/university
Known in Report As: #4-40 brass tapered threaded insert
Varian Torr Seal Vacuum Equipment High Vacuum Epoxy Vacuum Products Canada Inc. Known in Report As: low-pressure epoxy
Smiths Interconnect/IDI Contact Probes HEADED RADIUS Mouser Electornics 818-S-100-D-3.5-G Known in Report As: pogo pin
Smiths Interconnect/IDI Contact Probes Receptacle Solder Cup Mouser Electornics 818-R-100-SC Known in Report As: solder cup
1/4" Teflon Tubing Hardware store
Teflon tape Hardware store
1/4" Tube x 1/8" Male NPT Nickel Plated Brass Push-to-Connect Connector Fastenal 442064 Not the same ones used for this study, but are fuctionally equivalent
Known in Report As: push-to-connect pneumatic connector
1/8" NPT Tap and T-wrench Hardware store
1/4" Tube Push-to-Connect Manually Operated Valves Fluidline 7910-56-00 Known in Report As: manually operated push-to-connect valves
Adafruit DHT22 Humidity Sensor (small) Digi-Key 385 Known in Report As: internal humidity sensor
Adafruit DHT22 Humidity Sensor (large) Digi-Key Known in Report As: external humidity sensor
Arduino Uno Arduino
Glovebox environment
10 kOhm Resistor
Oscilla Xtralien Scientific Python IDE Oscilla https://www.ossila.com/pages/xtralien-scientific-python
Known in Report As: Python IDE

References

  1. Tremblay, J. -. F. The rise of OLED displays. Chemical & Engineering News. 94 (28), 30-34 (2016).
  2. Kang, H., et al. Bulk-Heterojunction Organic Solar Cells: Five Core Technologies for Their Commercialization. Advanced Materials. 28 (36), 7821-7861 (2016).
  3. Jacoby, M. The future of low-cost solar cells. Chemical & Engineering News. 94 (18), 30-35 (2016).
  4. Veldhuis, S. A., et al. Perovskite Materials for Light-Emitting Diodes and Lasers. Advanced Materials. 28 (32), 6804-6834 (2016).
  5. Park, N. -. G. Perovskite solar cells: an emerging photovoltaic technology. Materials Today. 18 (2), 65-72 (2015).
  6. Turak, A. Interfacial degradation in organic optoelectronics. RSC Advances. 3 (18), 6188 (2013).
  7. Scholz, S., Kondakov, D., Lüssem, B., Leo, K. Degradation Mechanisms and Reactions in Organic Light-Emitting Devices. Chemical Reviews. 115 (16), 8449-8503 (2015).
  8. Jørgensen, M., Norrman, K., Gevorgyan, S. A., Tromholt, T., Andreasen, B., Krebs, F. C. Stability of Polymer Solar Cells. Advanced Materials. 24 (5), 580-612 (2012).
  9. Habisreutinger, S. N., McMeekin, D. P., Snaith, H. J., Nicholas, R. J. Research Update: Strategies for improving the stability of perovskite solar cells. APL Materials. 4 (9), 091503 (2016).
  10. Reese, M. O., Sigdel, A. K., Berry, J. J., Ginley, D. S., Shaheen, S. E. A simple miniature controlled-atmosphere chamber for optoelectronic characterizations. Solar Energy Materials and Solar Cells. 94 (7), 1254-1258 (2010).
  11. Gevorgyan, S. A., Jorgensen, M., Krebs, F. C. A setup for studying stability and degradation of polymer solar cells. Solar Energy Materials and Solar Cells. 92 (7), 736-745 (2008).
  12. Park, J. -. S. S., Chae, H., Chung, H. K., Lee, S. I. Thin film encapsulation for flexible AM-OLED: a review. Semiconductor Science and Technology. 26 (3), 034001 (2011).
  13. Ahmad, J., Bazaka, K., Anderson, L. J., White, R. D., Jacob, M. V. Materials and methods for encapsulation of OPV: A review. Renewable & Sustainable Energy Reviews. 27, 104-117 (2013).
  14. Gevorgyan, S. A., et al. Round robin performance testing of organic photovoltaic devices. Renewable Energy. 63, 376-387 (2014).
  15. Osterwald, C. R., Hammond, R., Zerlaut, G., D’Aiello, R. Photovoltaic module certification and laboratory accreditation criteria development. Solar Energy Materials and Solar Cells. 41, 629-636 (1996).
  16. Turak, A., et al. Systematic analysis of processing parameters on the ordering and performance of working poly(3-hexyl-thiophene):[6,6]-phenyl C(61)-butyric acid methyl ester solar cells. Journal of Renewable and Sustainable Energy. 2 (5), 53103 (2010).
  17. Qi, B., Wang, J. Fill factor in organic solar cells. Physical Chemistry Chemical Physics. 15 (23), 8972-8982 (2013).
  18. Lu, N., Li, L., Sun, P., Liu, M. Short-circuit current model of organic solar cells. Chemical Physics Letters. 614, 27-30 (2014).
  19. Qi, B., Wang, J. Open-circuit voltage in organic solar cells. Journal of Materials Chemistry. 22 (46), 24315-24325 (2012).
  20. Xue, J., Uchida, S., Rand, B. P., Forrest, S. R. 4.2% efficient organic photovoltaic cells with low series resistances. Applied Physics Letters. 84 (16), 3013-3015 (2004).
  21. Hauch, J. A., Schilinsky, P., Choulis, S. A., Rajoelson, S., Brabec, C. J. The impact of water vapor transmission rate on the lifetime of flexible polymer solar cells. Applied Physics Letters. 93 (10), 103306 (2008).
  22. Norrman, K., Madsen, M. V., Gevorgyan, S. A., Krebs, F. C. Degradation Patterns in Water and Oxygen of an Inverted Polymer Solar Cell. Journal of the American Chemical Society. 132 (47), 16883-16892 (2010).
  23. Dameron, A. A., Reese, M. O., Moriconie, T. J., Kempe, M. D. Understanding Moisture Ingress and Packaging Requirements for Photovoltaic Modules. Photovoltaics International. 5, 121-130 (2009).
  24. Standard Test Method for Water Vapor Transmission Rate of Sheet Materials Using Dynamic Relative Humidity Measurement. ASTM E398 – 13 Available from: https://www.astm.org/Standards/E398 (2013)
  25. Basha, R. K., Konno, K., Kani, H., Water Kimura, T. Water Vapor Transmission Rate of Biomass Based Film Materials. Engineering in Agriculture, Environment and Food. 4 (2), 37-42 (2011).
  26. Kim, N., et al. A correlation study between barrier film performance and shelf lifetime of encapsulated organic solar cells. Solar Energy Materials and Solar Cells. 101, 140-146 (2012).
  27. Reese, M. O., et al. Pathways for the degradation of organic photovoltaic P3HT: PCBM based devices. Solar Energy Materials and Solar Cells. 92 (7), 746-752 (2008).
  28. Kempe, M. D., Reese, M. O., Dameron, A. A. Evaluation of the sensitivity limits of water vapor transmission rate measurements using electrical calcium test. Review of Scientific Instruments. 84 (2), 025109 (2013).
  29. Reese, M. O., et al. Consensus stability testing protocols for organic photovoltaic materials and devices. Solar Energy Materials and Solar Cells. 95 (5), 1253-1267 (2011).
  30. . Current landscape of standardisation efforts in organic and printed electronics 2015 – a VAMAS review Available from: https://www.researchgate.net/publication/278035615_Current_landscape_of_standardisation_efforts_in_organic_and_printed_electronics_2015_-_a_VAMAS_review (2015)
check_url/56925?article_type=t

Play Video

Cite This Article
Mogus, E., Torres-Kulik, B., Gustin, C., Turak, A. A 3D-printed Chamber for Organic Optoelectronic Device Degradation Testing. J. Vis. Exp. (138), e56925, doi:10.3791/56925 (2018).

View Video