Summary

监测果蝇中朊病毒样蛋白聚集物的细胞间传输

Published: March 12, 2018
doi:

Summary

积累的证据支持这种观点, 即与神经退行性疾病相关的致病蛋白聚集物在细胞间扩散, 与朊病毒类似。在这里, 我们描述了一种方法, 使可视化的细胞到细胞传播的朊病毒样聚集在模型有机体,果蝇

Abstract

蛋白质聚集是大多数神经退行性疾病的中心特征, 包括阿尔茨海默病 (AD)、帕金森病 (PD)、亨廷顿氏病 (HD) 和肌萎缩侧索硬化症 (ALS)。蛋白质团聚体与这些疾病中的神经病理学密切相关, 尽管不知道异常蛋白质聚集扰乱正常细胞稳态的确切机制。新出现的数据有力地支持了这种假说, 即 AD、PD、HD 和 ALS 中的致病性聚集物与普利子有许多相似之处, 它们是负责传染性海绵状性脑病的仅蛋白感染性药物。普利子自复制通过模板化同一蛋白质本机折叠的版本的转换, 导致聚集表型的传播。在 AD、PD、HD 和 ALS 中, 普利子和朊病毒样蛋白是如何从一个细胞移动到另一单元的, 目前是一个激烈调查的领域。在这里, 一个果蝇模型, 允许监测朊病毒样, 细胞对细胞的传播与 HD 相关的突变杭丁顿蛋白 (Htt) 聚集。该模型利用强大的工具来处理许多不同的果蝇组织中的转基因表达, 并利用荧光标记的细胞质蛋白直接报告突变 Htt 聚合体朊病毒样转移。重要的是, 我们在这里描述的方法可以用来确定新的基因和途径, 在不同的细胞类型之间, 介导蛋白质聚合体的传播在体内。从这些研究中获得的信息将扩大对神经退行性疾病的致病机制的有限理解, 并揭示治疗干预的新机会。

Introduction

朊病毒假说指出, 负责传染性海绵状性脑病(例如, 人克雅氏病, 羊瘙痒病绵羊, 鹿和麋鹿的慢性浪费疾病, 和牛的疯牛病) 的传染性剂) 完全由蛋白质组成, 缺乏核酸1。在朊病毒疾病中, 细胞朊蛋白 (prpC) 假设一个非本机、稳定的折叠 (prpSc), 它具有高度 beta 版, 可以通过将单体 PrPC分子转换和招募到稳定的淀粉样中进行自我传播。聚合.PrPSc聚合使用此自复制机制在有机体中的不同单元格之间进行传播, 甚至在单个有机体之间进行扩展2

蛋白质错误折叠和聚集也是大多数神经退行性疾病 (阿尔茨海默病 (AD)、帕金森病 (PD)、亨廷顿氏病 (HD) 和肌萎缩侧索硬化症 (ALS)) 的中心特征 3.这些疾病中或超细胞内聚集蛋白的形成与细胞毒性4密切相关, 随着时间的推移, 通过大脑的高度可重现性和疾病特定的路径进展5,6. 这些传播模式表明, 与这些疾病相关的致病性聚集物具有类似朊病毒的性质。现在有强有力的支持, 因为朊病毒样的传播与 AD、PD、HD 和 ALS 有关的聚合体-它们从细胞到细胞和模板在以前未受影响的细胞中单体形式的构象变化7, 8

迄今为止, 大多数研究都是利用哺乳动物细胞培养模型进行的, 调查蛋白质聚集蛋白样的扩散, 从细胞外空间或从另一细胞中转移到天真细胞的细胞质中。细胞质9,10,11,12,13,14,15, 或将含骨料材料注入鼠标大脑和监测聚合外观在注入站点的外部16,17,18,19,20,21,22, 23. 最近, 转基因动物被用来证明胞内聚集物扩散到完整大脑中的其他细胞中24,25,26,27, 28,29,30。在这里, 我们描述了一个方法, 直接可视化的总转移之间的单个细胞在完整的大脑中的果蝇果蝇模型的 HD/polyglutamine (polyQ) 疾病的首次开发近两年前31,32 , 并提供了许多宝贵的洞察力的致病机制, 这些疾病的根源33. HD 是一种遗传性神经退行性疾病, 由常染色体显性突变引起, 该基因的编码为蛋白杭丁顿蛋白 (Htt) 34.这种突变导致在 Htt 的 N 终点附近的 polyQ 伸展扩展超过 37 glutamines 的致病阈值, 导致蛋白质 misfold 和聚合35,36。野生型 Htt 蛋白含有 < 37 glutamines 在这个拉伸达到他们的本机褶皱, 但可以诱导聚合后, 直接物理接触 Htt 聚合 "种子"12,27,37。我们利用这一着, 有核聚集的野生型 Htt 作为一个读数的朊病毒样转移和细胞质进入的突变 Htt 聚合体起源于其他细胞。

确定像朊病毒样的聚集物在细胞间穿梭的机制, 可以为无法治愈的神经退行性疾病确定新的治疗靶点。我们利用快速生命周期, 易用性和基因驯良的果蝇, 以确定分子机制的细胞对细胞扩散的突变 Htt 集。我们的实验策略采用了两个二进制表达系统, 在果蝇, 建立良好的 Gal4-specific 上游激活序列 (Gal4-UAS) 系统38和最近开发的 QUAS 系统39。耦合这两个独立的系统允许限制突变体和野生型 Htt 转基因在同一飞行中的不同细胞群的表达40。利用这一方法, 我们通过监测胞质野生型 Htt 从其通常弥漫性、可溶性状态到聚集状态的分布, 对突变体的 Htt 的传播进行检查, 这是与预先形成的突变体物理接触的直接后果 Htt聚合 “种子”。利用突变体 Htt 的生化或生物物理技术, 可以证实野生型 Htt 的转化, 如荧光共振能量转移 (烦恼)9,27,41.

重要的是, 我们还可以访问大量的基因工具在果蝇, 以确定基因和/或途径, 介导朊病毒样的传播蛋白质聚集。最近, 我们使用这种方法来揭开细胞表面清道夫受体, 德雷柏42,43的关键作用, 将突变 Htt 聚合体从神经元轴突转移到果蝇中心附近的吞噬细胞中。神经系统 (中枢神经系统)27。因此, 我们在这里描述的基于遗传和影像学的方法可以揭示在简单使用但功能强大的模型有机体 (果蝇) 中有关疾病相关现象的重要基本生物学信息。

Protocol

1. 在果蝇中耦合 Gal4 和 Htt 的转基因表达 收集和/或生成含有组织特定 Gal4 或资历 “驱动程序” 的转基因果蝇线, 以及包含 Gal4-UAS38或 Htt QUAS39转基因下游的野生型或突变体的线。确保从这些转基因表达的蛋白质被融合到荧光蛋白或表位标记, 以允许分化的突变和野生型 Htt 转基因产品在同一苍蝇。请参见图 1。注意: 我?…

Representative Results

这里描述的方法可以产生强健的数据, 表明在完整的飞行中枢神经系统中, Htt 蛋白聚集物从一个细胞种群转移到另一个体细胞。在捐赠者 ORNs 中 HttQ91-mCherry 表达式 (图 2a-c和图 4a, B) 中, Htt 的 YFP 融合蛋白的直接荧光观察了野生型的从弥漫到点的转化。准确报告这两个细胞之间的朊病毒转移事件需要仔细?…

Discussion

随着神经退行性疾病患者的数量继续增加, 迫切需要增加对这些疾病分子发病机制的了解, 以便更好地开发治疗方法。在这里, 我们描述的方法, 可以监测病毒样的传播致病蛋白聚集在不同的细胞类型之间的模型有机体,果蝇。我们最近使用这种方法来演示突变体 Htt 集的病毒样传播在体内, 并确定一种吞噬性受体, 介导这些聚合体从神经元扩散到胶质细胞27。我们的方?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢 Kopito, 罗和皮尔斯实验室的成员在这些方法开发过程中的许多有益的讨论。我们还感谢布赖恩 Temsamrit 对这篇手稿的批判性阅读。这项工作得到了科学大学和水史密斯慈善信托基金的资助。

Materials

Phosphate buffered saline (PBS), 10X, pH 7.4 ThermoFisher Scientific AM9625 Dilute to 1X
Triton X-100 Sigma-Aldrich T9284-1L
Kimwipes Thomas Scientific 2904F24
20% paraformaldehyde (PFA) Electron Microscopy Sciences 15713-S
Normal Goat Serum (NGS), filtered Lampire Biological Laboratories 7332500 Aliquot and freeze upon receipt
Chicken anti-GFP Aves Labs GFP-1020 Use at 1:500 dilution
Rabbit anti-DsRed Clontech 632496 Use at 1:2000 dilution; can recognize DsRed-based fluorescent proteins (e.g. mCherry, mStrawberry, tdTomato, etc.)
Mouse anti-Bruchpilot Developmental Studies Hybridoma Bank nc82 Use at 1:100 dilution; will label active pre-synaptic structures thoughout the fly brain
FITC anti-chicken ThermoFisher Scientific SA1-7200 Use at 1:250 dilution
Alexa Fluor 568 anti-rabbit Life Technologies A11011 Use at 1:250 dilution
Alexa Fluor 647 anti-mouse antibody Life Technologies A21235 Use at 1:250 dilution
Slowfade Gold Antifade Reagent Life Technologies S36936
Microscope Slides (25 x 75 x 1.0 mm) Fisher Scientific 12-550-143
Cover Glass (22 x 22 mm) Globe Scientific 1404-15
Dumont Biology Grade Forceps, Style 3 Ted Pella 503 use in non-dominant hand
Dumont Biology Grade Forceps, Style 5 Ted Pella 505 use in dominant hand
LAS X image analysis software Leica
Imaris image analysis software Bitplane

References

  1. Prusiner, S. B. Biology and genetics of prions causing neurodegeneration. Annu Rev Genet. 47, 601-623 (2013).
  2. Haïk, S., Brandel, J. P. Infectious prion diseases in humans: Cannibalism, iatrogenicity and zoonoses. Infect Genet Evol. 26, 303-312 (2014).
  3. Balch, W. E., Morimoto, R. I., Dillin, A., Kelly, J. W. Adapting Proteostasis for Disease Intervention. Science. 319 (5865), 916-919 (2008).
  4. Stroo, E., Koopman, M., Nollen, E. A., Mata-Cabana, A. Cellular Regulation of Amyloid Formation in Aging and Disease. Front Neurosci. 11, 64 (2017).
  5. Brundin, P., Melki, R., Kopito, R. Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol. 11 (4), 301-307 (2010).
  6. Jucker, M., Walker, L. C. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature. 501 (7465), 45-51 (2013).
  7. Stopschinski, B. E., Diamond, M. I. The prion model for progression and diversity of neurodegenerative diseases. Lancet Neurol. 16 (4), 323-332 (2017).
  8. Walker, L. C., Jucker, M. Neurodegenerative diseases: expanding the prion concept. Annu Rev Neurosci. 38, 87-103 (2015).
  9. Holmes, B. B., et al. Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. Proc Natl Acad Sci U S A. 110 (33), 3138-3147 (2013).
  10. Munch, C., O’Brien, J., Bertolotti, A. Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc Natl Acad Sci U S A. 108 (9), 3548-3553 (2011).
  11. Nonaka, T., et al. Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep. 4 (1), 124-134 (2013).
  12. Ren, P. H., et al. Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nat Cell Biol. 11 (2), 219-225 (2009).
  13. Trevino, R. S., et al. Fibrillar structure and charge determine the interaction of polyglutamine protein aggregates with the cell surface. J Biol Chem. 287 (35), 29722-29728 (2012).
  14. Volpicelli-Daley, L. A., et al. Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron. 72 (1), 57-71 (2011).
  15. Zeineddine, R., et al. SOD1 protein aggregates stimulate macropinocytosis in neurons to facilitate their propagation. Mol Neurodegener. 10, 57 (2015).
  16. Ayers, J. I., Fromholt, S. E., O’Neal, V. M., Diamond, J. H., Borchelt, D. R. Prion-like propagation of mutant SOD1 misfolding and motor neuron disease spread along neuroanatomical pathways. Acta Neuropathol. 131 (1), 103-114 (2016).
  17. Clavaguera, F., et al. Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc Natl Acad Sci U S A. 110 (23), 9535-9540 (2013).
  18. de Calignon, A., et al. Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron. 73 (4), 685-697 (2012).
  19. Eisele, Y. S., et al. Induction of cerebral beta-amyloidosis: intracerebral versus systemic Abeta inoculation. Proc Natl Acad Sci U S A. 106 (31), 12926-12931 (2009).
  20. Luk, K. C., et al. Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science. 338 (6109), 949-953 (2012).
  21. Meyer-Luehmann, M., et al. Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science. 313 (5794), 1781-1784 (2006).
  22. Mougenot, A. L., et al. Prion-like acceleration of a synucleinopathy in a transgenic mouse model. Neurobiol Aging. 33 (9), 2225-2228 (2012).
  23. Rey, N. L., et al. Widespread transneuronal propagation of alpha-synucleinopathy triggered in olfactory bulb mimics prodromal Parkinson’s disease. J Exp Med. 213 (9), 1759-1778 (2016).
  24. Babcock, D. T., Ganetzky, B. Transcellular spreading of huntingtin aggregates in the Drosophila brain. Proc Natl Acad Sci U S A. 112 (39), 5427-5433 (2015).
  25. Kim, D. K., et al. Anti-aging treatments slow propagation of synucleinopathy by restoring lysosomal function. Autophagy. 12 (10), 1849-1863 (2016).
  26. Liu, L., et al. Trans-synaptic spread of tau pathology in vivo. PLoS One. 7 (2), 31302 (2012).
  27. Pearce, M. M., Spartz, E. J., Hong, W., Luo, L., Kopito, R. R. Prion-like transmission of neuronal huntingtin aggregates to phagocytic glia in the Drosophila brain. Nat Commun. 6, 6768 (2015).
  28. Pearce, M. M. Prion-like transmission of pathogenic protein aggregates in genetic models of neurodegenerative disease. Curr Opin Genet Dev. 44, 149-155 (2017).
  29. Pecho-Vrieseling, E., et al. Transneuronal propagation of mutant huntingtin contributes to non-cell autonomous pathology in neurons. Nat Neurosci. 17 (8), 1064-1072 (2014).
  30. Wu, J. W., et al. Neuronal activity enhances tau propagation and tau pathology in vivo. Nat Neurosci. 19 (8), 1085-1092 (2016).
  31. Jackson, G. R., et al. Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron. 21 (3), 633-642 (1998).
  32. Warrick, J. M., et al. Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell. 93 (6), 939-949 (1998).
  33. McGurk, L., Berson, A., Bonini, N. M. Drosophila as an In Vivo Model for Human Neurodegenerative Disease. Genetics. 201 (2), 377-402 (2015).
  34. The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 72 (6), 971-983 (1993).
  35. Bates, G. P., et al. Huntington disease. Nat Rev Dis Primers. 1, 15005 (2015).
  36. Scherzinger, E., et al. Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington’s disease pathology. Proc Natl Acad Sci U S A. 96 (8), 4604-4609 (1999).
  37. Chen, S., Berthelier, V., Yang, W., Wetzel, R. Polyglutamine aggregation behavior in vitro supports a recruitment mechanism of cytotoxicity. J Mol Biol. 311 (1), 173-182 (2001).
  38. Brand, A. H., Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 118 (2), 401-415 (1993).
  39. Potter, C. J., Tasic, B., Russler, E. V., Liang, L., Luo, L. The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell. 141 (3), 536-548 (2010).
  40. Riabinina, O., Potter, C. J. The Q-System: A Versatile Expression System for Drosophila. Methods Mol Biol. 1478, 53-78 (2016).
  41. Costanzo, M., et al. Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes. J Cell Sci. 126 (16), 3678-3685 (2013).
  42. Freeman, M. R., Delrow, J., Kim, J., Johnson, E., Doe, C. Q. Unwrapping glial biology: Gcm target genes regulating glial development, diversification, and function. Neuron. 38 (4), 567-580 (2003).
  43. MacDonald, J. M., et al. The Drosophila cell corpse engulfment receptor Draper mediates glial clearance of severed axons. Neuron. 50 (6), 869-881 (2006).
  44. Wu, J. S., Luo, L. A protocol for dissecting Drosophila melanogaster brains for live imaging or immunostaining. Nat Protoc. 1 (4), 2110-2115 (2006).
  45. Tito, A. J., Cheema, S., Jiang, M., Zhang, S. A Simple One-step Dissection Protocol for Whole-mount Preparation of Adult Drosophila Brains. J Vis Exp. (118), (2016).
  46. Roszik, J., Szöllosi, J., Vereb, G. AccPbFRET: an ImageJ plugin for semi-automatic, fully corrected analysis of acceptor photobleaching FRET images. BMC Bioinformatics. 9, 346 (2008).
  47. Spires-Jones, T. L., Attems, J., Thal, D. R. Interactions of pathological proteins in neurodegenerative diseases. Acta Neuropathol. 134 (2), 187-205 (2017).
check_url/56906?article_type=t

Play Video

Cite This Article
Donnelly, K. M., Pearce, M. M. P. Monitoring Cell-to-cell Transmission of Prion-like Protein Aggregates in Drosophila Melanogaster. J. Vis. Exp. (133), e56906, doi:10.3791/56906 (2018).

View Video