We describe here a behavioral setup and data analysis method for assaying olfactory responses of up to 100 vinegar flies (Drosophila melanogaster). This system may be used with single or multiple olfactory stimuli, and adaptable for optogenetic activation or silencing of neuronal subsets.
A key challenge in neurobiology is to understand how neural circuits function to guide appropriate animal behaviors. Drosophila melanogaster is an excellent model system for such investigations due to its complex behaviors, powerful genetic techniques, and compact nervous system. Laboratory behavioral assays have long been used with Drosophila to simulate properties of the natural environment and study the neural mechanisms underlying the corresponding behaviors (e.g. phototaxis, chemotaxis, sensory learning and memory)1-3. With the recent availability of large collections of transgenic Drosophila lines that label specific neural subsets, behavioral assays have taken on a prominent role to link neurons with behaviors4-11. Versatile and reproducible paradigms, together with the underlying computational routines for data analysis, are indispensable for rapid tests of candidate fly lines with various genotypes. Particularly useful are setups that are flexible in the number of animals tested, duration of experiments and nature of presented stimuli. The assay of choice should also generate reproducible data that is easy to acquire and analyze. Here, we present a detailed description of a system and protocol for assaying behavioral responses of Drosophila flies in a large four-field arena. The setup is used here to assay responses of flies to a single olfactory stimulus; however, the same setup may be modified to test multiple olfactory, visual or optogenetic stimuli, or a combination of these. The olfactometer setup records the activity of fly populations responding to odors, and computational analytical methods are applied to quantify fly behaviors. The collected data are analyzed to get a quick read-out of an experimental run, which is essential for efficient data collection and the optimization of experimental conditions.
The ability to adapt and respond to the external environment is critical for the survival of all animals. An animal needs to avoid dangers, seek out food and find mates, and learn from previous experiences. Sensory systems function to receive a variety of stimuli, such as visual, chemical and mechanosensory, and send these signals to the central nervous system to be interpreted and decoded. The brain then directs appropriate motor behaviors based on the perceived environment, such as foraging for food or escaping from a predator. Understanding how sensory systems detect the external world, and how the brain decodes and directs decisions, is a major challenge in neurobiology.
Drosophila melanogaster is a powerful model system for investigating how neural circuits guide behaviors. Besides being simple and inexpensive to maintain, Drosophila exhibit many diverse and complex stereotyped behaviors, yet do so with a compact nervous system of about 100,000 neurons. Powerful genetic techniques exist for manipulating the Drosophila genome, and thousands of transgenic lines have been generated that selectively and reproducibly label the same subsets of neurons10-13. These transgenic lines can be used to selectively manipulate the activity of the labeled neurons (activate or inhibit), and these manipulations can be used to investigate how neural functions guide behaviors.
Multiple behavioral assays have been developed for studying various Drosophila behaviors. Drosophila, like many animals, use their sense of smell for guiding many behavioral choices, such as finding food, finding mates, and avoiding dangers. Olfaction is therefore a good sensory system for investigating how external stimuli are detected and interpreted by an animal's nervous system to guide appropriate choices. As such, a number of assays have been developed for investigating larval and adult olfactory behaviors. Traditionally, olfactory behaviors in Drosophila were assayed by a two-choice T-maze paradigm, which can be used for assaying innate and learned olfactory behaviors3. In this assay, about 50 flies are given a choice between two tubes: one tube contains the odor in question and the other contains a control odorant (usually the odor solvent). The flies are given a set period of time to make a choice, and then the number of flies that are in the different chambers are counted. Although the T-maze is a simple assay for many experiments, there are several limitations. For example, olfactory behaviors are measured at only one time point, and different choices made before this time point are discarded. Similarly, the individual behaviors of the flies within the population are neglected. In addition, the T-maze requires manual counting of flies, which might introduce errors. Finally, since there are only two measured choices, this reduces the statistical power often required to detect subtle behavioral changes. An alternative to a two-choice T-maze is a four-quadrant (four-field) olfactometer14-18. In this assay, animals explore an arena in which each of the four corners of the arena is filled with a potential source of odorized air. The arena has a puckered star shape to maximize the formation of four experimentally defined odor quadrants. If odor is supplied in one of the corners then it is contained only in that one quadrant. The behaviors of the animals can be tracked as they enter and leave the odor quadrant, and easily compared to their behavior in the three control quadrants. The four-quadrant olfactometer assay thus records spatial and temporal behavioral response to the odor stimuli over a large experimental arena.
The four-quadrant olfactometer was first developed by Pettersson et al.15 and Vet et al.17 to investigate the olfactory behavioral responses of individual parasitic Hymenoptera. Faucher et al.18 and Semmelhack and Wang16 adapted the setup to monitor the olfactory responses of individual Drosophila. The four-quadrant olfactometer is equally sensitive to attractive and repulsive responses, allowing for a wide range of test odorants and conditions. Custom-written fly tracking software, developed by Alex Katsov19 and currently maintained by Julian Brown (detailed in Materials), introduced additional advantages to more recent implementations of the four-quadrant olfactometer14,20-23. It is now possible to assay up to 100 flies simultaneously at high spatial (27.5 pixels/cm) and temporal (30 frames per sec) resolution, which allows extracting various parameters, such as position, speed and acceleration of flies at any time point. This enables investigations into the dynamics of the flies' behavioral responses to odors20. It should be noted, however, that the identity of individual flies within the population during the entire tracking period is not maintained. Instead, each fly track is recorded for as long as two fly tracks do not intersect. At which point, new tracks are assigned after the flies diverge. By incorporating other video-capturing software (detailed in Materials Table), the same configuration allows flexible tracking periods and could be used to track flies for up to 24 hr by taking images at a lower frame rate. This option was used to study egg-laying behaviors of flies and compare their body positions with ovipositional preferences14. The four-field olfactometer may also be used to study responses to multimodal (e.g. olfactory and visual) stimuli, or to combine optogenetic9 or thermogenetic21 stimulation with presentations of sensory stimuli. Furthermore, the high temporal resolution allows the extraction of trajectories for each individual fly in the ensemble data set. Therefore, the method allows investigation into olfactory-guided population behaviors and also individual social interactions. The data generated by this assay are robust and highly reproducible, allowing for the use of the four-field olfactometer for behavioral screens.
We describe here the setup assembly for a four-quadrant olfactometer. We further demonstrate its use in assaying olfactory attraction in response to apple cider vinegar and repulsion in response to highly concentrated ethyl propionate. Finally, we describe and provide example code for the analysis of the recorded fly tracking data.
1. Setup Assembly
2. Olfactory Stimuli Preparation
3. Fly Preparation
4. Behavioral Responses to Attractive and Repellent Odorants
5. Data Analysis
Note: The suggested fly tracking acquisition software (detailed in Materials), tracks flies in real time during acquisition, and saves the time stamp and coordinates of all detected flies in *.dat format. We have developed a custom-made Matlab routine to convert the data into a Matlab format, and to analyze the data. Code examples are provided in Supplementary Materials, but details of implementation will depend on the software used for data acquisition.
The four-quadrant olfactometer assay records and analyzes the walking activities of many flies over a large behavioral space. Odorants can be introduced into the air-streams that enter one, two, three, or all four quadrants. In the absence of odors, the flies will freely move between all four quadrants. This behavior is crucial to observe as it indicates that un-intentional biases have not been introduced into the assay. These biases can include light, temperature fluctuations, differences in air flow, or odor contaminants. Figure 3B shows the behavioral responses in the four-quadrant olfactometer of 25 male and 25 female flies to dry air. A single fly-track from the collected data is also highlighted in Figure 3B, and demonstrates that this fly was exploring the entire behavioral arena. The attraction index score (AI) for all the analyzed tracks over the 5-min test period is close to 0, indicating a lack of attraction to the odor quadrant. Similarly, the percentage index (PI) of the experiment is 0.24, indicating that flies were distributed fairly even in all four quadrants during the 5-min test period.
The four-field behavioral response to an attractive odorant is shown in Figure 3C. Apple cider vinegar is introduced into the air stream of top-left odor quadrant air-stream by placing a 6.25% dilution of apple cider vinegar into the test odor chamber. The collected fly tracks shown in gray demonstrate that most flies collect in this odor quadrant, and no longer explore all four quadrants. A single colored fly track shows that once a fly enters the apple cider vinegar odor-quadrant, it tends to remain in the attractive odor quadrant. The AI of 0.94 for the experiment is close to 1 indicating strong attraction to this odorant. The PI of 0.92 indicates that 92% of the flies remained in the odor quadrant during the analysis period.
The four-field behavioral response to a repellant odorant is shown in Figure 3D. A 10% dilution of the odorant ethyl propionate placed in an odor chamber was used as the odor source for the top-left air stream. The massed fly tracks for the analyzed experiment demonstrate avoidance of the odor quadrant, suggestive of odor-guided repulsion. A single colored fly track shows that a fly, when it entered the odor quadrant, quickly turned away to avoid the odor quadrant. The AI of -0.68 is less than 0, which indicates repulsion, and is close to -1, indicative of a strong repulsive odorant response. The PI of 0.06 for the experiment suggests that only 6% (as compared to ~25% in the neutral odor experiments) of the tracked fly data points were found in the odor quadrant over the course of the experiment.
An attraction index is the most widely used metric for analyzing olfactory data since it allows scores greater than 0 to indicate attraction (positive) and scores less than 0 to indicate repulsion (negative). The closer the score is to +1 or -1, the stronger the attraction or repulsion to that odor, respectively. As described above, this metric may not clearly indicate the percentage or proportion of flies tracked to the odor quadrant over the course of the experiment. In which case, a Percentage Index may be more informative. Figure 3E diagrams the relationship between AI and PI scores, and how these numbers relate to attractive or repulsive behaviors.
The four-field assay results in robust and reproducible olfactory behaviors. This allows for quantitative comparisons between control and experimental conditions as shown in Figure 3F, and also enables the identification of subtle olfactory responses that deviate from neutrality.
Furthermore, as the data is obtained at high spatial and temporal resolution, it is possible to study numerous factors of behavioral responses, such as trajectories of single flies (as shown in Figure 3), as well as characterize different activity dynamics of the flies in an odor field (e.g., changes in direction and velocity19,20).
It can often be difficult to position the four-field arena in the exact same location for each experiment, especially since frequent cleaning of the arena is required. The provided analyses scripts compensate for these slight variations by first fitting the data as shown in Figure 4A. In this case, the shape of the four-field arena is calculated, and data points that lie outside this space are removed. These tracked objects often represent debris or reflections that are erroneously tracked. As they do not lie within the arena and thus represent noise, it is important that these data points are removed to prevent erroneous data analyses. Similarly, it is also important to remove tracked data points that might represent noise or non-moving flies within the arena. To accomplish this, an analysis script is utilized (and provided here) that removes data points that essentially do not move (as shown in Figure 4B). These data points are usually in the minority, yet their retention would lead to errors in analyses.
Attraction index and preference index scores can be calculated after a set time period (e.g. at the end of a 5 min experiment as shown in Figure 3). It should be noted, however, that since flies are tracked with high spatial and temporal resolution, similar analyses could be performed throughout the experiment. This is shown in Figure 4C in which the Attraction Index and Percentage Index scores are calculated in continuous 10-sec bins over the time period. Such analysis allows better appreciation of olfactory changes that might occur throughout the experiment, such as habituation to an odorant.
Figure 1: Schematic of the Four-quadrant Olfactometer. (A) The behavior setup is composed of an odor delivery system, temperature control system (not diagrammed), image acquisition system (IR LED lights and IR CCD camera connected to a computer), four-quadrant arena and light-tight behavior and arena boxes. The red circles designate the corresponding components shown in Figure 2. (B) Detailed design of the odor delivery system. The green characters represent the connection/conversion sizes of fittings. Tubes of 1/16 I.D. and 1/8 O.D. are labeled in yellow whereas those of 1/8 I.D. and 1/4 O.D. are labeled in pink. Abbreviations: IR, infrared; CF, Compression Fitting; BF, Barbed Fitting, MNPT, Male National Pipe Thread. Please click here to view a larger version of this figure.
Figure 2: Photos of the Olfactory Assay Setup. (A) Wide-field view of camera box and behavior box. (B) View inside the behavior box. The temperature probe, connector tubes, and IR LED arrays are labeled. (C) Four-quadrant arena. (D) Wide-field view of the odor delivery system connected to the behavior box. The camera box has been removed to reveal the CCD camera. (E) Central air is passed first through a pressure regulator and then through a carbon filter. (F) Example of the odor tubes connected to the manifold. (G) High-resolution flow tubes regulate the airflow. (H) The odor delivery tubing and connectors downstream of the flowtube regulators. (I) The solenoid valves regulate if clean air is passed through an odor chamber or expelled to the room. (J) The odor chambers are connected to one-way valves, and contain an inner glass container for the odorant. (K) The behavior box contains outside push-to-connect fittings that connect to the odor delivery tubing. Please click here to view a larger version of this figure.
Figure 3: Example Data Generated using a Four-field Olfactory Assay. (A) Schematic of the four-field arena. (B) Neutral responses are observed when all four quadrants contain only dry air perfusion. (C) Attraction responses to a 6.25% dilution of apple cider vinegar perfused from the left upper quadrant. (D) Repulsion behaviors triggered by 10% ethyl propionate. In Figure 2B-2D, a single trajectory from the acquired data is plotted. A color gradient is used to signify the time course of recording, with blue and red colors being the start and end of recordings, respectively. (E) Comparison of the Attraction Index (AI) and the Percentage Index (PI). (F) Average AI's of 3- 6 experiments with no odor (Control), Apple Cider Vinegar (ACV) and 10% Ethyl Propionate (EP). Error bars indicate SEM. Statistical difference was evaluated by the Kolmogorov-Smirnov test. Please click here to view a larger version of this figure.
Figure 4: Example Data Generated by the Data Analysis Steps. (A) Spatial filtering of the data, performed by MaskSpatialFiltering.m to remove data points that fall outside of the arena. Red circles show initial positions of the circles that are used to define the borders of the arena. Black circles are the final positions, acquired by fitting the circle outlines to the data (grey shaded area inside the four-field). Red dots and black arrowheads indicate data points that will be removed from the dataset after this filtering step. (B) Temporal filtering of data, performed by TemporalFiltering.m. This filtering step removes data points that move very slowly or not at all, as they are likely to be generated by non-moving flies or by dirt/reflections from the arena. A red dot surrounded by a dashed red box indicates positions of ~6,000 data points with identical coordinates that will be removed by this filtering step. (C) Attraction Index (AI) and Percentage Index (PI), calculated in 10-sec bins over the last 5 min of an experiment by AttractionIndex.m. Temporal profiles of these indexes contain information about the dynamics of behavioral responses and may be used for detailed analysis of behaviors. Please click here to view a larger version of this figure.
The four-field olfactometer described here is a versatile behavioral system for studying the olfactory responses of large populations of wild-type and mutant Drosophila flies. Each experiment takes ~1 hr (including setup, experimental runs, and cleaning), and 4-6 experiments can be routinely performed each day. A typical assay using 40-50 flies for 5 minutes generates approximately 450,000 tracked data points for analysis. The described configuration may also be used, with minor modifications, to monitor movements of other insects or insect larvae in response to olfactory or other sensory stimuli over a time period, ranging from min to days. The four-quadrant assay is sensitive to the effects of both attractive and repulsive stimuli. Most odorants generate attraction indexes (AI) between -0.9 and +0.9 (Equation 1). An AI in the range of +0.5 to +1 signifies strong attraction behavior of the flies to the stimuli, whereas AI in the range of -0.5 to -1 is triggered by strong repellents. Generally speaking, a neutral response by control odors (dry air, humidified air, mineral oil) should fall between +0.1 and -0.1. The AI often changes throughout the course of the test experiment, reflecting the time flies require to walk into the odorant plumes, initial attraction and increase of locomotor activity towards a novel stimulus, and the eventual desensitization in response to the stimulus. Pre-test control runs are essential, and must be performed carefully to ensure that flies were distributed uniformly in the arena in the absence of the desired stimulus.
Most frequent causes of spatial bias of flies in the arena are: uneven air streams, possibly due to disconnected tubing or inadequately clamped glass plates of the star-shaped arena (in our experience, flies are able to detect differences of airflow of as little as 15 ml/min); uneven temperature distribution across the arena, that may be improved by setting the air conditioner unit to generate weaker and more diffuse air flow and/or longer pre-acquisition period (~20 min) to ensure even temperature of the arena; minimal light leakage through the temperature probe opening, that may be reduced by sealing the opening with black tape; residual odor in the arena or in the air delivery system, in which case the setup (arena, flowtubes, fittings of the light-tight enclosure, etc) need to be cleaned thoroughly and allowed to dry for several days or replaced where possible.
Maintenance of the olfactory equipment is important for reliable and consistent results. Push-to-connect fittings on the behavior box and air inlets and inner walls of the arena should be cleaned with ethanol after every experiment if strong odors are used, and allowed to dry fully. The glass plates should be washed three times with a 70% ethanol, which is usually sufficient to remove residual odor and dirt from the plates, but hexane is useful in removing organic compound deposited by flies (e.g., pheromones consisting of long hydrocarbon chains). Soap is generally not recommended because it usually contains aromatic components, which would affect olfactory behaviors. The behavior box should remain connected to the dry air inlets between experiments (e.g. overnight) to facilitate removal of the residual odors from the system.
If the locomotor activity of the flies is low, they may generate too few data points, which often results in a noisy and variable Attraction Index. Longer starvation and recording times may help to solve this problem. In contrast, if the flies are sick, 24-28 hr of starvation would generally be sufficient for enhancing locomotion activity as long as it is consistent throughout experiments. There is a fine balance between maintaining a healthy state of the flies and increasing locomotion. 40 hr starvation may be used as a starting point, and later modified as needed based on the experimental results. Attraction Indexes will be somewhat affected by the duration of starvation, thus it is essential to starve all experimental animals for the same period of time in order to avoid confounding effects of starvation time. Longer starvation times usually make repulsive responses weaker (closer to 0), and attractive responses stronger. Dry air control air streams tend to desiccate the flies, and should not be used for longer than 40 min.
The four-quadrant olfactometer may be used to study responses of single16,18 or multiple flies to a single stimulus or to study choice preference between stimuli. For example, different odors could be used in each of the four-quadrants. This could also be used to determine the responses to odor-mixtures by examining the boundaries of the odor-quadrants. It should be noted that even though the tracking system allows individual tracks to be isolated from the collected data, it is possible that individual flies may behave differently when assayed as part of a group than when they are tested alone. For example, groups of flies exhibit increased odor-guided repulsion due to physical interactions between flies26. The tracking system and layout can also be adapted for use in non-olfactory assays. The assay framework may easily accommodate an LED array9 for optogenetic stimulation, or a thermal plate27 for thermogenetics. The system may also be adapted to study behavioral choices of a time scale of many hr, for example to study egg-laying behaviour14. In this case, the acquisition frame rate needs to be adjusted to avoid the generation of large data files, and a source of humidity and substrate (1% agarose gel) need to be provided as egg-laying substrate.
A limitation of this setup is that the flies are tracked as IR-reflecting objects in and below the arena- if any element of an optogenetic or thermogenetic experiment reflects IR, the irrelevant data points will need to be removed during post-processing. Currently it is also not possible to film flies at a spatial resolution that allows different flies to be continuously distinguishable, but this may be improved in the future by using more advanced video cameras. Another limitation of the current system is that the movement of flies is constrained to two dimensions to promote walking behaviors, and will prevent olfactory-induced flight responses.
It should be noted that additional automated assays have also been developed to investigate the olfactory behaviors of single or groups of flies. The most similar design to the assay described here is a method developed by Beshel and Zhong28. In this assay, the responses of ~30 flies are monitored in a small circular arena (roughly a quarter the area of the four-field arena) in which odors are delivered from 1 of 4 odor ports along the arena wall, and removed through a hole in the center of the circular arena. Besides a smaller arena, other design differences include behaviors being performed under light conditions, and odorants mainly concentrating close to the odor ports (instead of throughout the odorant quadrant as directed by the puckered walls of the four-field arena). Nonetheless, the circular arena is a suitable method for screening olfactory responses of flies, and could be adapted to the fly tracking design described here.
An alternative approach is to simultaneously monitor the activity of many single flies in response to odors. In the Flywalk assay, individual flies are placed in small tubes, and their responses tracked when odorants are perfused through the tube29,30. Changes in forward or reverse direction, or changes in velocities, can be utilized to gauge if an odorant is generally attractive or repulsive. This assay, like the four-field assay, automatically tracks fly movements, and so can be used to quickly measure olfactory responses to a wide-range of odors. However, unlike the four-field, complex motor dynamics, such as trajectory turning angles and potential social interactions, maybe missed in the Flywalk assay recording.
Automatic tracking of single walking flies has also been adapted to a T-maze type assay31,32. In this assay, flies are placed in small chambers in which odors are perfused from either end of the chamber, and exit via a port in the middle of the chamber. The positions of the flies are also automatically tracked. This mimics, on a single fly scale, a T-maze framework. In combination with optogenetics, this assay has been particularly well suited for assaying neural circuits mediating olfactory learning and memory, and can also be used to gauge the olfactory preferences of single flies. Similar to Flywalk, it cannot monitor complex activity dynamics that might occur over larger spatial areas, such as those that occur during food-seeking14, or behaviors that occur only in fly populations.
The authors have nothing to disclose.
We thank Terry Shelley for manufacturing the fly arena and the light-tight enclosure, Liz Marr for help with fly stock maintenance, and Xiaojing Gao and Junjie Luo for help with the Matlab code used for data analysis. We thank Johan Lundström at the Monell Chemical Senses Center for demonstrating his odor delivery setup. This work was supported by grants from the Whitehall Foundation (CJP) and NIH NIDCD (R01DC013070, CJP).
Air delivery system | (Quantity needed) | ||
Tubing and connectors | |||
Thermoplastic NPT(F) Manifolds | Cole-Parmer, IL, USA | R-31522-31 | 1 |
Hex reducing nipple (1/4MNPT->1/8MNPT) | McMaster-Carr, IL, USA | 5232T314 | 1 |
Tubing (ID:1/8) | McMaster-Carr, IL, USA | 5108K43 | 50Ft |
Tubing (ID:1/16) | McMaster-Carr, IL, USA | 52355K41 | 100Ft |
Barbed tube fittings | McMaster-Carr, IL, USA | 5117K71 | 1pack |
Push-to-connect tube fittings | McMaster-Carr, IL, USA | 5779K102 | 4 |
Barbed Tube Fittings (1/4MNPT->1/8BF) | McMaster-Carr, IL, USA | 5463K439 | 1 pack (10) |
Barbed Tube Fittings (1/8MNPT->1/8BF) | McMaster-Carr, IL, USA | 5463K438 | 2 pack (10) |
Barbed Tube Fittings (1/8MNPT->1/16BF) | McMaster-Carr, IL, USA | 5463K4 | 2 pack (10) |
Barbed Tube Fittings (1/4MNPT->1/4BF) | McMaster-Carr, IL, USA | 5670K84 | 1 |
Hex head plug | McMaster-Carr, IL, USA | 48335K152 | 1 |
Air pressure regulator, air filter and flowmeters | (Quantity needed) | ||
Labatory gas drying unit | W A HAMMOND DRIERITE CO LTD, OH, USA | Model: L68-NP-303; stock #26840 | 1 |
Multitube frames for 150-mm flowtubes | Cole-Parmer, IL, USA | R03215-30 | 1 |
Multitube frames for 150-mm flowtubes | Cole-Parmer, IL, USA | R03215-76 | 1 |
150-mm flowtubes | Cole-Parmer, IL, USA | R-03217-15 | 9 |
Valve Cartridge | Cole-Parmer, IL, USA | R-03218-72 | 9 |
Precision Air regulator | McMaster-Carr, IL, USA | 6162K13 | 1 |
Soleniod valves | Automate Scientific, Berkeley, CA | 02-10i | 4 |
Solenoid valve controller | ValveLink 8.2, Automate Scientific, Berkeley, CA | 01-18 | 1 |
Electronic flow meter | Honeywell | AWM3100V | 1 |
DAQ (NI USB-6009, National Instruments) and a | National Instruments | NI USB-6009 | 1 |
Power supply | Extech Instruments | 382200 | 1 |
Odor chambers | |||
Polypropylene Wide Mouth jar 2oz; 60ml | Nalgene | 562118-0002 | At least 5 are required per experiment, but a separate chamber is required for each dillution of each odorant. Available at Container Store, part #635114) |
Glass odor chamber, 0.25 oz | Sunburst Bottle | LB4B | At least 5 are required per experiment |
"In" valve for odor chamber | Smart Products, Inc., CA, USA | 214224PB-0011S000-4074 | 1 of these parts is used per odor chamber but they need to be replaced frequently |
"Out" valve for odor chamber | Smart Products, Inc., CA, USA | 224214PB-0011S000-4074 | 1 of these parts is used per odor chamber but they need to be replaced frequently |
O ring | RT Dygert International, MN, USA | AS568-029 Buna-N O-R | 1 pack (100) |
Fly arena, camera and behavior boxes | (Quantity needed) | ||
Behavior and camera box material | Interstate plastics, CA, USA | ABS black extruded (https://www.interstateplastics.com/Abs-Black-Extruded-Sheet-ABSBE~~ST.php) | 1803 sq inch |
Teflon for fly arena and odor chamber inserts, 3/8" thick, 12"x12" | McMaster-Carr, IL, USA | 8545K27 | 1 |
Glass plates, 1/8" Thick, 9"x 9" | McMaster-Carr, IL, USA | 8476K191 | 2 |
Dual action thermoelectric controller | WAtronix Inc, CA, USA | DA12V-K-0 | 1 |
IR LED array | Advanced Illumination, Rochester, VT, USA | AL4554-88024, PS24-TL | 2 LED arrays and one power supply |
Air conditioner Unit | Melcor Store | MAA280T-12 | 1 |
Imaging system | (Quantity needed) | ||
Cosmicar/Pentax C21211TH (12.5mm F/1.4) C-mount Lens | B AND H PHOTO AND ELECTRONICS CORP, NY, USA | PEC21211 KP | 1 |
CCXC-12P05N Interconnect Cable | B AND H PHOTO AND ELECTRONICS CORP, NY, USA | SOCCXC12P05N | 1 |
DC-700 Camera Adapter | B AND H PHOTO AND ELECTRONICS CORP, NY, USA | SODC700 | 1 |
B+W 40,5 093 IR filter | B AND H PHOTO AND ELECTRONICS CORP, NY, USA | 65-072442 | 1 |
TiFFEN 40.5mm Circular polarizer | Amazon | 1 | |
IR Videocamera | Industrial Vision Source, FL, USA | Sony XC-EI50 (SY-XC-E150) | 1 |
USB video converter | The Imagingsource, NC, USA | DFG/USB2-It | 1 |
iFlySpy2 (fly tracking software) | Julian Brown, Stanford, Calfornia: julianrbrown@gmail.com | iFlySpy2 | 1 |
IC Capture 2.2 software | The Imagingsource, NC, USA (http://www.theimagingsource.com/en_US/products/software/iccapture/) | ||
Miscellaneous | (Quantity needed) | ||
Dremel rotary tool | Dremel, Racine, WI, USA | Dremel 8000-03 | 1 |
Diamond-coated drill bits for glass cutting | Available from various suppliers; MSC industrial Supply Co, Melville, NY | 90606328 | 1 |