Summary

שיטה למניפולציות מתח פנים של מתכת נוזלית באמצעות חמצון פני שטח והפחתה

Published: January 26, 2016
doi:

Summary

We present a method to control the interfacial energy of a liquid metal in an electrolyte via electrochemical deposition (or removal) of a surface oxide layer. This simple method can control the capillary behavior of gallium-based liquid metals by tuning the interfacial energy rapidly, significantly, and reversibly using modest voltages.

Abstract

שליטה מתח interfacial היא שיטה יעילה לטיפול בצורה, מיקום, והזרימה של נוזלים בסולמות אורך תת מילימטר, שבו מתח interfacial הוא כוח דומיננטי. מגוון שיטות קיימות לשליטה במתח interfacial של נוזלים מימיים ואורגניים בקנה מידה זה; עם זאת, טכניקות אלה כלי למתכות נוזליים מוגבלות בשל מתח interfacial הגדול שלהם.

מתכות נוזליים יכולות ליצור רכיבים רכים, מתיחה, וצורה-reconfigurable במכשירים אלקטרוניים ואלקטרו-מגנטיים. למרות שניתן לתפעל נוזלים אלה באמצעות שיטות מכאניות (למשל, שאיבה), שיטות חשמליות קלות יותר למזער, שליטה, וליישם. עם זאת, רוב טכניקות חשמל האילוצים שלהם: הרטבה חשמלית-על-דיאלקטרי דורשת פוטנציאלים גדולים (ק) להפעלה ללא צנועה, electrocapillarity יכול להשפיע על שינויים קטנים יחסית במתח interfacial, וele הרציףctrowetting מוגבל לתקעים של המתכת הנוזלית בנימים.

כאן, אנו מציגים שיטה לactuating גליום וסגסוגות מתכת נוזלית מבוסס גליום באמצעות תגובת משטח אלקטרוכימיים. שליטה הפוטנציאל אלקטרוכימי על פני השטח של המתכת הנוזלית באלקטרוליט במהירות והפיך משנה את מתח interfacial על ידי יותר משני סדרי הגודל (̴500 MN / מ 'כמעט לאפס). יתר על כן, שיטה זו דורשת רק פוטנציאל מאוד צנוע (<1 V) מיושם ביחס לאלקטרודה דלפק. השינוי וכתוצאה מכך המתח נובע בעיקר מהתצהיר אלקטרוכימיים של שכבת תחמוצת פני השטח, הפועל כחומרים פעילי שטח; הסרת תחמוצת מגבירה את מתח interfacial, ולהיפך. טכניקה זו יכולה להיות מיושמת במגוון רחב של אלקטרוליטים ואינו תלוי במצע שעליו הוא מונח.

Introduction

This method provides a simple way to control the surface tension of liquid metals containing gallium. The method uses modest voltages (~1 V) applied directly to the liquid metal (relative to a counter electrode in the presence of electrolyte) to achieve enormous and reversible changes to the surface tension of the metal1.

Surface tension is a dominant force for liquids at small length scales and is important for a number of capillary phenomena including wetting, spreading, and surface-tension driven flow. Consequently, the ability to control surface tension is a sensible way to manipulate the shape, position, and flow of liquids at sub-mm length scales. The most common way to alter surface tension between two fluids is to use a surfactant, which is a molecule that spans the interface between the fluids. Surfactants lower surface tension, but in a way that is not easy to reverse since it is difficult to remove surfactants from the interface. Surface tension can also be altered using a variety of techniques, including temperature gradients2,3, light4, surface chemistry57,and voltage8. But most of these methods result in modest changes to surface tension, particularly for liquid metals, which have notably large surface tensions.

The ability to control the surface tension of liquid metal could enable new opportunities for creating shape reconfigurable structures with metallic properties for electronic, thermal, and optical applications914. The most common liquid metal is Hg, which is noted for its toxicity. The methods described here are relevant for liquid metals based on gallium. These metals have low viscosity, large surface tension, low volatility (low vapor pressure), and low toxicity15. Importantly, these metals form surface oxides composed of gallium oxide that are a few nm thick in air16. This oxide layer creates a physical skin that historically has been a nuisance for electrochemical and fluid dynamic applications17. The method here utilizes the oxide in new ways to control surface tension.

The most common way to manipulate liquid metals in electrolyte is to apply a potential to the metal relative to a counter electrode18. Oppositely charged ions from the electrolyte match the charges on the metal, causing the interfacial tension to drop. This phenomenon-termed electrocapillarity-has been known since the 1870s as described by Lippman19and has been utilized for alloys of gallium20. Typically, electrocapillarity achieves modest changes to surface tension, since undesirable electrochemical reactions limit the range of voltages applied to the metal. In contrast, the method described here utilizes the surface oxidation of the metal (or conversely, the reduction of the surface oxide) as a way to achieve enormous changes in surface tension above and beyond changes resulting from electrocapillarity. The leading explanation for this phenomenon is that the oxide is asymmetric; that is, the outer surface of the oxide terminates with hydroxyl groups (making a low interfacial tension interface with the aqueous electrolyte), and the interior surface of the oxide terminates with gallium atoms (making a low interfacial tension interface with the metal). In contrast, the removal of the oxide via electrochemical reduction results in a bare metal-electrolyte interface, which returns the metal back to a state of high surface tension. We characterize the interfacial tension of the metal by analyzing the shape of sessile droplets as a function of voltage while assuming that gravity and surface tension are the dominant forces that define the curvature of its surface.

The advantage of this technique relative to classic electrocapillarity is that it can reversibly tune the tension of low toxicity liquid metals over enormous ranges (from ~500 mN/m to near zero). This delta change in surface tension may be the largest ever reported in literature for any fluid and it can be accomplished in a tunable and reversible manner. These large changes in surface tension are useful for manipulating the capillary behavior of metals; for example, it can induce the metal to spread on a surface, withdraw the metal from microchannels, fill microchannels with metal, and overcome the Rayleigh instabilities to form liquid metal fibers1,21.

A drawback of this technique is that it requires electrolyte. It works best in acidic or basic conditions, because these electrolytes remove excess surface oxide that would otherwise contaminate the surface of the metal and mechanically restrict the movement of the metal. The simultaneous removal and deposition of the oxide layer complicates the analysis of the interfacial phenomena and it is our hope the methods described in this paper empowers additional analysis. Another disadvantage is that the electrochemical reactions at the surface of the metal must be matched by complimentary half-reactions at the counter electrode22,23. This can lead to hydrogen bubbles forming at the counter electrode.

Protocol

1. מניפולציה של המתח interfacial של מתכת נוזלית באלקטרוליט חִמצוּן יוצקים אלקטרוליט המימי (חומצי או הבסיסי) לתוך צלחת פטרי. כדי להבטיח שהתחמוצת נמחקה לחלוטין, להשתמש חומצה או…

Representative Results

איור 1 מציג דוגמא של טכניקת שתי אלקטרודות הפשוטה לחמצון והפחתה. במקרה זה, ירידה של 70 μl של המתכת הנוזלית להציב 1 מגעים M NaOH פתרון חוטי נחושת כדי ליצור חיבור חשמלי. M NaOH 1 מסיר את משטח תחמוצת מהמתכת ומאפשר למתכת חרוז עד בשל מתח interfacial. ?…

Discussion

שיטה זו שולטת במתח של מתכות נוזליים מבוסס גליום באמצעות מתח קטן לנהוג בתצהיר והסרת משטח תחמוצת פני השטח. למרות שהשיטה עובדת רק בפתרונות אלקטרוליט, זה פשוט, ועובד במגוון רחב של מצבים שונים, אבל יש דקויות ראוי לציין. בהיעדר הפוטנציאל חשמלי, שתי תמיסות החומציות והבסי?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors acknowledge support from Samsung, the NC State Chancellors Innovation Funds, NSF (CAREER CMMI-0954321 and Triangle MRSEC DMR-1121107), and Air Force Research Labs.

Materials

Eutectic Gallium Indium Indium Corporation
Sodium Hydroxide Fisher Scientific 2318-3
Hydrochloric Acid Fisher Scientific A481-212
Sodium Fluoride Sigma-Aldrich 201154
Optical Adhesive Norland NOA81
Polydimethylsiloxane (Sylgard-184) Dow Corning Silicone Elastomer Kit
Borosilicate Glass Capillaries Friedrich and Dimmoch B41972
Ag/AgCl Reference Electrode Microelectrodes Inc. MI-401F
Voltage Source Keithley 3390
Potentiostat Gamry Ref 600
Laser Cutter Universal Laser Systems VLS 3.50

References

  1. Khan, M. R., Eaker, C. B., Bowden, E. F., Dickey, M. D. Giant and switchable surface activity of liquid metal via surface oxidation. Proc. Natl. Acad. Sci. 111 (39), 14047-14051 (2014).
  2. Kataoka, D. E., Troian, S. M. Patterning liquid flow on the microscopic scale. Nature. 402 (6763), 794-797 (1999).
  3. Daniel, S., Chaudhury, M. K., Chen, J. C. Fast Drop Movements Resulting from the Phase Change on a Gradient Surface. Science. 291 (5504), 633-636 (2001).
  4. Ichimura, K., Oh, S. K., Nakagawa, M. Light-driven motion of liquids on a photoresponsive surface. Science. 288 (5471), 1624-1626 (2000).
  5. Gallardo, B. S., et al. Electrochemical principles for active control of liquids on submillimeter scales. Science. 283 (5398), 57-60 (1999).
  6. Zhao, B., Moore, J. S., Beebe, D. J. Surface-Directed Liquid Flow Inside Microchannels. Science. 291 (5506), 1023-1026 (2001).
  7. Chaudhury, M. K., Whitesides, G. M. How to Make Water Run Uphill. Science. 256 (5063), 1539-1541 (1992).
  8. Lahann, J., et al. A reversibly switching surface. Science. 299 (5605), 371-374 (2003).
  9. Rogers, J. A., Someya, T., Huang, Y. Materials and Mechanics for Stretchable Electronics. Science. 327 (5973), 1603-1607 (2010).
  10. Bauer, S., et al. 25th Anniversary Article: A Soft Future: From Robots and Sensor Skin to Energy Harvesters. Adv. Mater. 26 (1), 149-162 (2013).
  11. Ozbay, E. Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions. Science. 311 (5758), 189-193 (2006).
  12. Monat, C., Domachuk, P., Eggleton, B. J. Integrated optofluidics: A new river of light. Nat. Photonics. 1 (2), 106-114 (2007).
  13. Schurig, D., et al. Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science. 314 (5801), 977-980 (2006).
  14. Dickey, M. D. Emerging Applications of Liquid Metals Featuring Surface Oxides. ACS Appl. Mater. Interfaces. 6 (21), 18369-18379 (2014).
  15. Dickey, M. D., et al. Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv. Funct. Mater. 18 (7), 1097-1104 (2008).
  16. Regan, M. J., et al. X-ray study of the oxidation of liquid-gallium surfaces. Phys. Rev. B. 55 (16), 10786-10790 (1997).
  17. Giguère, P. A., Lamontagne, D. Polarography with a Dropping Gallium Electrode. Science. 120 (3114), 390-391 (1954).
  18. Frumkin, A., Polianovskaya, N., Grigoryev, N., Bagotskaya, I. Electrocapillary phenomena on gallium. Electrochim. Acta. 10 (8), 793-802 (1965).
  19. Lippmann, G. . Relations entre les phénomènes électriques et capillaires. , (1875).
  20. Tsai, J. T. H., Ho, C. M., Wang, F. C., Liang, C. T. Ultrahigh contrast light valve driven by electrocapillarity of liquid gallium. Appl. Phys. Lett. 95 (25), 251110 (2009).
  21. Khan, M. R., Trlica, C., Dickey, M. D. Recapillarity: Electrochemically Controlled Capillary Withdrawal of a Liquid Metal Alloy from Microchannels. Adv. Funct. Mater. 25 (5), 671-678 (2015).
  22. Saltman, W., Nachtrieb, N. The Electrochemistry of Gallium. J. Electrochem. Soc. 100, 126-130 (1953).
  23. Perkins, R. Anodic-Oxidation of Gallium in Alkaline-Solution. J. Electroanal. Chem. 101, 47-57 (1979).
  24. Xu, Q., Oudalov, N., Guo, Q., Jaeger, H. M., Brown, E. Effect of oxidation on the mechanical properties of liquid gallium and eutectic gallium-indium. Phys. Fluids. 24, 063101 (2012).
  25. Rotenberg, Y., Boruvka, L., Neumann, A. W. Determination of surface tension and contact angle from the shapes of axisymmetric fluid interfaces. J. Colloid Interface Sci. 93, 169-183 (1983).
  26. Xia, Y., Whitesides, G. M. Soft Lithography. Annu. Rev. Mater. Sci. 28 (1), 153-184 (1998).
  27. Pourbaix, M. . Atlas of Electrochemical Equilibria in Aqueous Solutions. , (1974).
  28. Gough, R. C., et al. Rapid electrocapillary deformation of liquid metal with reversible shape retention. Micro Nano Syst. Lett. 3 (1), 1-9 (2015).
  29. Wang, M., Trlica, C., Khan, M. R., Dickey, M. D., Adams, J. J. A reconfigurable liquid metal antenna driven by electrochemically controlled capillarity. J. Appl. Phys. 117 (19), 194901 (2015).

Play Video

Cite This Article
Eaker, C. B., Khan, M. R., Dickey, M. D. A Method to Manipulate Surface Tension of a Liquid Metal via Surface Oxidation and Reduction. J. Vis. Exp. (107), e53567, doi:10.3791/53567 (2016).

View Video