Summary

でMARCMベースのクローンのMechanosensationための行動アッセイ<em>キイロショウジョウバエ</em

Published: December 30, 2015
doi:

Summary

In order to identify novel mutations affecting mechanosensation, we designed an assay that measures the behavioral response to tactile stimulation of fly bristles in mutant clones generated by the MARCM method. The combination of techniques allows for the identification of mechanosensitive mutations that would otherwise be lethal.

Abstract

そのため哺乳類の内耳の有毛細胞への構造的および機能的相同性のため、 ショウジョウバエの外部感覚器官を神経支配するニューロンはmechanosensationの研究のための優れたモデルシステムを提供します。このプロトコルは、mechanosensationを妨害する変異を同定するために使用することができショウジョウバエでシンプルなタッチの動作について説明します。 macrochaeteの触覚刺激は、ハエの胸郭に毛のいずれかの第1または第3の脚からグルーミング反射を誘発します。 (例えばNOMPCなど)メカノと、または反射弓の他の側面に干渉する突然変異は、グルーミング応答を阻害することができます。大人の行動の伝統的な画面は開発中の重要な役割を持っている変異体を逃したであろう。代わりに、このプロトコルは、exprで生成され、マークされたホモ接合変異体の細胞の限られた領域を可能にするために、抑制性細胞マーカー(MARCM)でモザイク解析でタッチスクリーンを組み合わせました緑色蛍光タンパク質(GFP)のession。異常行動応答についてMARCMクローンを試験することにより、より伝統的な方法では見逃されたであろうmechanosensationに関与する新しい遺伝子を検索するために致死P因子突然変異のコレクションをスクリーニングすることが可能です。

Introduction

Humans rely on the ability to convert mechanical stimuli from their environment, such as touch, pressure, vibration, or sound waves, into sensory information that can be processed by the nervous system, in a process termed mechanotransduction. Many of the overall mechanistic features of mechanotransduction between humans and invertebrates are the same1, making Drosophila a useful model to study the molecular mechanisms of mechanotransduction. Drosophila melanogaster contain two sets of specialized sensory organs (Type I and II) that are capable of converting mechanical stimuli into action potentials. Type I mechanoreceptors have a neuron with a single dendrite or sensory process, surrounded by three support cells2. The Type I mechanoreceptors include bristle mechanoreceptors, hearing sensitive chordotonal organs (the Johnston’s organ), and campaniform sensilla that convey information about wing beats3. The bristles that cover the dorsal side of the fly are the most abundant and easily accessible of the Type I organs. Similar to the extracellular environment of hair cells associated with hearing and balance in vertebrates, the support cells surrounding fly mechanosensitive neurons secrete a high potassium endolymph that creates an unusual concentration gradient for potassium1. Mechanosensitive neurons, of both the mammalian and fly systems, utilize this high extracellular potassium to depolarize the cell. In response to mechanical stimulation of the macrochaete bristles towards the body wall, the sensory neurons respond with a burst of action potentials driven by this potassium depolarization of the cell membrane4. The Drosophila sensory neurons that innervate bristles resemble the mechanosensitive cells of other organisms, including vertebrate hair cells, in both structure and function1,5. The accessibility of Drosophila external sense organs to experimental manipulation and the abundance of genetic techniques available to researchers make Drosophila an excellent model system to investigate the molecular underpinnings of mechanosensation.

In the fly, stimulation of a single sensory neuron that innervates a bristle leads to an observable behavioral response. Stimulation of different bristles evokes specific, reproducible behavioral responses, depending on the bristle that is stimulated. Upon tactile stimulation, decapitated wild-type flies exhibit a complex grooming reflex wherein they clean the area near the stimulated bristle with a patterned set of leg movements5-7. When homozygous for known single-gene mutations that interfere with learning7 or coordination and locomotor activity5, flies respond abnormally to mechanical stimulation. This grooming reflex is therefore a useful tool to study the effects of single-gene mutations on a specific, replicable behavior.

The robust behavioral response to stimulation of a single macrochaete bristle holds the potential to assist in identifying new genes involved in mechanotransduction. This protocol being used to test a collection of mutant flies for the absence of a behavioral response to indicate that the mutation interferes with mechanosensation. In the mutant collection selected for screening, the mutations cause lethality before adulthood, and therefore would be impossible to test using traditional adult behavior screens. Originally, this collection of lethal p-elements was combined with FRT recombination sites to test cell growth defects in clones. The clones were made specifically in the eye because adult flies can survive in the lab setting without functional vision8. However, removal of all mechanosensation can cause adults to be severely uncoordinated or die before eclosion5. This protocol uses a mosaic approach to circumvent the lethality of the mutations and allow for adult stage testing. A genetic technique called Mosaic Analysis with a Repressible Cell Marker (MARCM)9 is used to generate homozygous mutant cells in a limited number of adult fly sensory organs, while the rest of the organism remains heterozygous. These MARCM flies readily survive until adulthood, yet the bristles are homozygous for the lethal genes of interest.

MARCM allows for regions of homozygous mutant cells to be generated and marked by the expression of green fluorescent protein (GFP), while the rest of the organism remains heterozygous at that particular locus and unmarked9. MARCM combines individual p-element mutations with five common genetic elements: GFP under the control of an upstream-activating sequence (UAS-GFP), Gal80 repressor protein under control of a general promoter (tub-Gal80), Gal4 transcription factor under control of a general promoter (tub-Gal4), the FRT recombinase enzyme expressed through a heat-shock controlled promoter, and a FRT recombination site10. By driving mitotic recombination through a heat-shock activated recombinase, a limited number of cells are made homozygous for the mutation and marked with GFP. GFP expression is repressed in heterozygous cells by the presence of Gal80 on the wild-type copy of the chromosome.

A heat-shock protocol for MARCM was optimized to induce recombination in the fly bristle external sense organs, while much of the organism remains heterozygous, and thus unmarked with GFP. Mosaic flies generated using this protocol contained homozygous mutations most frequently in the post alar or dorsal central bristles on the surface of the notum.

We have tested the utility of this combination of MARCM and the grooming behavior screen with a known mechanosensitive mutant, NOMPC. The ion channel, no mechanoreceptor potential C (NOMPC), is an essential component of the mechanotransduction pathway in Drosophila5,11-13. NOMPC belongs to the transient receptor potential (TRP) superfamily of cation channels5 and satisfies all of the criteria to qualify as a mechanosensitive channel in Drosophila14,15: 1) NOMPC is expressed in the ciliate tips of type 1 sensory neurons of Drosophila 13,16-18, 2) NOMPC null larvae do not have an electrical response to tactile stimulation13, 3) Ectopic expression of NOMPC in touch insensitive cells can induce sensitivity to mechanical stimulation13, 4) heterologous expression of NOMPC in Schneider 2 cells yields a mechanosensitive channel13, and 5) NOMPC adult mutants display defects in their response to mechanical stimulation5. Given this evidence, we predicted that NOMPC mutant clones would show an altered or inhibited grooming response in response to mechanical stimulation of bristles.

A MARCM-stock containing the NOMPC mutation was developed for use in a proof of principle experiment of the grooming assay. Mosaic flies were stimulated at macrochaete bristles containing homozygous NOMPC mutant cells. We expected an inhibition of the grooming response following stimulation of the macrochaete bristle. We found that only 2 of 14 mutant bristle flies tested gave a single response to repeated stimulation; most did not respond to stimulation of the homozygous mutant bristle. Having confirmed that this MARCM-based behavioral assay produces an abnormal grooming reflex in a known mechanosensitive mosaic mutant, this technique can be used in a screen for additional mechanosensitive mutations.

Protocol

1.十字MARCMのハエを生成するには 22℃で、または標準のショウジョウバエメディアコーンミール糖蜜培地(0.13%Tegosept; 23.5グラム/ Lの酵母; 60グラム/ Lのコーンミール、60ミリリットル/ Lの糖蜜; 4ミリリットル/ Lの酸ミックス6.5グラム/ Lの寒天)上のハエを維持12時間の明/暗サイクルです。 注:標準温度よりも低い、健康MARCM-株を維持するために使用されます。これは14日に?…

Representative Results

このプロトコルの成功は、主にテスト可能なハエの全収率に依存して、熱ショックの効果は、有糸分裂組換え、2分間隔で刺激されたハエにおける強固な行動反応を得る能力を誘導します。胚の推定12.5%が必要MARCM要素およびG​​FP発現の可能性を有する孵化する成人の推定16.67%を含有することを考えると、それは時限中の卵の高い数を得ることが重要である産みま?…

Discussion

このプロトコル 、ショウジョウバエでmechanosensationに影響を与える変異をスクリーニングするために、大人の行動アッセイを利用しています。突然変異体のコレクションは、成人としてのスクリーニング不可能に致死P因子の変異が含まれているため、このプロトコルは最初のリーと羅によって記述複雑な遺伝的手法を利用しています、(1999)、成人の致死性を回避するための…

Disclosures

The authors have nothing to disclose.

Acknowledgements

著者らは、ハエの株式の寛大な共有のためのブルーミントンストックセンター、Liqun羅、チャールズZuker、とリリーとユウ農月に感謝し、資金調達のために、以下の希望:(JDとSW)はSOMAの-URM、学士フォード学部夏フェローシップを、レニーとアンソニー・M・マーロン、MD '63夏の研究フェローシップ(CLおよびDLに)(SW)は、BD社サマー研究員を経て(TO)ジェームズ・C. '75とジェーンColihan夏の研究フェローシップ(DLに) (TO)にホーリークロス、ストランスキー財団サマー研究員の大学の卒業生/親サマー研究基金。ラボですべての作業をサポートするためのホーリークロスカレッジで生物学科と学部長のオフィスに感謝します。

Materials

Brewers Yeast (25 lb) MP Biomedicals  ICN90331225  Fly Food
Corn (25lb) MP Biomedicals  ICN90141125  Fly Food
Agar (1lb) MoorAgar Inc. 41004 Fly Food
Tegosept (5kg) Genesee 20-259 Fly Food
Molasses (1Gallon) Sugarmill Brand – Thomsen Food Service 0 2625 Fly Food
Propionic Acid Fisher A258-500 Fly Food
Phosphoric acid Fisher A260-500 Fly Food
Drosophila Vials, Narrow (PS) Genesee 32-109 Fly Cultures
6oz Square Bottom Bottle (PP) Genesee 32-130 Fly Cultures
Flugs – Plastic Fly Bottles Genesee 49-100 Fly Cultures
Rayon Balls, Large Genesee 51-100 Fly Cultures
Droso-Filler, Narrow Genesee 59-168 Fly Food Preparation
Droso-Filler, Bottles Genesee 59-170 Fly Food Preparation
8A-C / gear driven lab stirrer with c-clamp mount  1/15HP, 700RPM variable speed, 115V, 50/60Hz Cleveland Mixer 8A-C Fly Food Preparation
Water jacketed Kettle Fly Food Preparation
Diurnal Growth Chamber Forma Scientific Temperature and light/dark cycle controlled
Water bath VWR For heat shock
MicroScissors  Fine Science Tools  15000-08 For removing heads
Fluroscence Dissecting Microscope Zeiss SteREO Discovery V8  With GFP cube (KSC295-814D) band pass filter
Fluroscence Light Source Zeiss X-Cite 120 Fiber optic light pipe makes this easy to configure 
Camera for Scope Zeiss AxioCam ICc1
Image acquistion software Zeiss
Ice bucket for cold anthesia
Homemade cold anthesia tray for cold anthesia decapitation
Plastic boxes for recovery of decaptitated flies in humid environment

References

  1. Grünert, U., Gnatzy, W. K+ and Ca++ in the receptor lymph of arthropod cuticular mechanoreceptors. J Comp Physiol A. 161, 329-333 (1987).
  2. Kernan, M. J. Mechanotransduction and auditory transduction in Drosophila. Pflugers Arch. 454, 703-720 (2007).
  3. Gillespie, P. G., Walker, R. G. Molecular basis of mechanosensory transduction. Nature. 413, 194-202 (2001).
  4. Corfas, G., Dudai, Y. Adaptation and fatigue of a mechanosensory neuron in wild-type Drosophila and in memory mutants. J Neurosci. 10, 491-499 (1990).
  5. Kernan, M., Cowan, D., Zuker, C. Genetic dissection of mechanosensory transduction: mechanoreception-defective mutations of Drosophila. Neuron. 12, 1195-1206 (1994).
  6. Vandervorst, P., Ghysen, A. Genetic control of sensory connections in Drosophila. Nature. 286, 65-67 (1980).
  7. Corfas, G., Dudai, Y. Habituation and dishabituation of a cleaning reflex in normal and mutant Drosophila. J Neurosci. 9, 56-62 (1989).
  8. Chen, J., et al. Discovery-based science education: functional genomic dissection in Drosophila by undergraduate researchers. PLoS Biol. 3, e59 (2005).
  9. Lee, T., Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron. 22, 451-461 (1999).
  10. Wu, J. S., Luo, L. A protocol for mosaic analysis with a repressible cell marker (MARCM) in Drosophila. Nature Protocols. 1, 2583-2589 (2006).
  11. Eberl, D. F., Hardy, R. W., Kernan, M. J. Genetically similar transduction mechanisms for touch and hearing in Drosophila. J Neurosci. 20, 5981-5988 (2000).
  12. Walker, R. G., Willingham, A. T., Zuker, C. S. A Drosophila mechanosensory transduction channel. Science. 287, 2229-2234 (2000).
  13. Yan, Z., et al. Drosophila NOMPC is a mechanotransduction channel subunit for gentle-touch sensation. Nature. 493, 221-225 (2013).
  14. Arnadottir, J., Chalfie, M. Eukaryotic Mechanosensitive Channels. Annual Review of Biophysics. 39, 111-137 (2010).
  15. Christensen, A. P., Corey, D. P. TRP channels in mechanosensation: direct or indirect activation?. Nature Reviews Neuroscience. 8, 510-521 (2007).
  16. Cheng, L. E., Song, W., Looger, L. L., Jan, L. Y., Jan, Y. N. The Role of the TRP Channel NompC in Drosophila Larval and Adult Locomotion. Neuron. 67, 373-380 (2010).
  17. Lee, J., Moon, S., Cha, Y., Chung, Y. D. Drosophila TRPN(=NOMPC) channel localizes to the distal end of mechanosensory cilia. PLoS One. 5, e11012 (2010).
  18. Liang, X., Madrid, J., Saleh, H. S., Howard, J. NOMPC, a Member of the TRP Channel Family, Localizes to the Tubular Body and Distal Cilium of Drosophila Campaniform and Chordotonal Receptor Cells. Cytoskeleton. 68, 1-7 (2011).
  19. de Vries, S. E., Clandinin, T. R. Loom-sensitive neurons link computation to action in the Drosophila visual system. Curr Biol. 22, 353-362 (2012).
  20. Jarman, A. P. Studies of mechanosensation using the fly. Hum Mol Genet. 11, 1215-1218 (2002).

Play Video

Cite This Article
Murphy, T. P., Luu, D. D., DeSimone, J. A., O’Brien, T. C., Lally, C. J., Lindblad, J. J., Webster, S. M. A Behavioral Assay for Mechanosensation of MARCM-based Clones in Drosophila melanogaster. J. Vis. Exp. (106), e53537, doi:10.3791/53537 (2015).

View Video