Summary

ייצור סינטטי גרעינית ממיסים זכוכית

Published: January 04, 2016
doi:

Summary

A protocol for the production of synthetic nuclear melt glass, similar to trinitite, is presented.

Abstract

Realistic surrogate nuclear debris is needed within the nuclear forensics community to test and validate post-detonation analysis techniques. Here we outline a novel process for producing bulk surface debris using a high temperature furnace. The material developed in this study is physically and chemically similar to trinitite (the melt glass produced by the first nuclear test). This synthetic nuclear melt glass is assumed to be similar to the vitrified material produced near the epicenter (ground zero) of any surface nuclear detonation in a desert environment. The process outlined here can be applied to produce other types of nuclear melt glass including that likely to be formed in an urban environment. This can be accomplished by simply modifying the precursor matrix to which this production process is applied. The melt glass produced in this study has been analyzed and compared to trinitite, revealing a comparable crystalline morphology, physical structure, void fraction, and chemical composition.

Introduction

Concerns over the potential malicious use of nuclear weapons by terrorists or rogue nations have highlighted the importance of nuclear forensics analysis for the purpose of attribution.1 Rapid post-detonation analysis techniques are desirable to shorten the attribution timeline as much as possible. The development and validation of such techniques requires realistic nuclear debris samples for testing. Nuclear testing no longer occurs in the United States and nuclear surface debris from the testing era is not readily available (with the exception of trinitite – the melt glass produced by the first nuclear test at the trinity site) and therefore realistic surrogate debris is needed.

The primary goal of the method described here is the production of realistic surrogate nuclear debris similar to trinitite. Synthetic nuclear melt glass samples which are readily available to the academic community can be used to test existing analysis techniques and to develop new methods such as thermo-chromatography for rapid post-detonation analysis.2 With this goal in mind the current study is focused on producing samples which mimic trinitite but do not contain any sensitive weapon design information. The fuel and tamper components within these samples are completely generic and the comparison to trinitite is based on chemistry, morphology, and physical characteristics. The similarities between trinitite and the synthetic nuclear melt glass produced in this study have been previously discussed.3

The purpose of this article is to outline the details of the production process used at the University of Tennessee (UT). This production process was developed with two key parameters in mind: 1) the composition of material incorporated into nuclear melt glass, and 2) the melting temperature of the material. Methods exist for estimating the melting temperature of glass forming networks4 and these techniques have been employed here, along with additional experimentation to determine the optimal processing temperature for the trinitite matrix.5

Alternative methods for surrogate debris production have been published recently. The use of high power lasers has the advantage of creating sufficiently high temperatures to cause elemental fractionation within the target matrix.6 Porous chromatographic substrates have been used to produce small particles similar to fallout particles using condensed phase methods7. The latter method is most useful for producing particulate debris (nuclear fallout) and has been demonstrated with natural metals. The advantages of the method presented here are 1) simplicity, 2) reproducibility, and 3) scalability (sample sizes can range from tiny beads to large chunks of melt glass). Also, this method is expandable both in terms of production output and variety of explosive scenarios covered, and it has already been demonstrated using radioactive materials. A sample has been successfully activated at the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). Natural uranium compounds were added to the matrix prior to melting and fission products were produced in situ by neutron irradiation.

Methods within the glass making industry and those employed for the purpose of radioactive waste immobilization8 have been consulted in the development of the method presented here. The unique effects of radiation in glasses are of inherent interest9 and will constitute an important area of study as this method is further developed.

The method described below is appropriate for any application where a bulk melt glass sample is desired. These samples most closely resemble the material found near the epicenter of a nuclear explosion. Samples of various sizes can be produced, however, methods employing plasma torches or lasers will be more useful for simulating fine particulate debris. Also, commercial HTFs do not reach temperatures high enough to cause elemental fractionation for a wide range of elements. This method should be employed when physical and morphological characteristics are of primary importance.

Protocol

זהירות: התהליך המתואר כאן כולל את השימוש בחומר רדיואקטיבי (למשל, אורניום חנקתי Hexahydrate) וכמה חומרים מאכלים. יש להשתמש בבגדי מגן מתאימים וציוד (כוללים חלוק מעבדה, כפפות, משקפים מגן, ומנדף) במהלך הכנת מדגם. בנוסף, אזורי מעבדה המשמשים לעבודה זו צריכים להיות במעקב באופן קבוע לזיהו?…

Representative Results

הדגימות שאינן רדיואקטיביים מיוצרות במחקר זה כבר לעומת trinitite ואיורים 1-3 מראים כי הנכסים ומורפולוגיה הפיזיים הם אכן דומים. איור 1 מספק תמונות החושפות את הדמיון בצבע ובמרקם שהם נצפו ברמת מקרוסקופית. איור 2 מראה תמונות מיקרוסקופ אלקטרוני סורק (…

Discussion

שמדומה כמות UNH המדויקת משתנות בהתאם לתרחיש: הערה לגבי צעדים 1.2.2 ו1.2.3. נוסחות התכנון שפותחו על ידי ואח Giminaro אל. ניתן להשתמש כדי לבחור את המסה המתאימה של אורניום למדגם נתון 13 כפי שפורט בסעיף "הפעלה לדוגמא" של מאמר זה. כמו כן, תחמוצת אורניום (UO 2 או …

Disclosures

The authors have nothing to disclose.

Acknowledgements

Portions of this study have been previously published in the Journal of Radioanalytical and Nuclear Chemistry.3,13 A patent is pending for this method.

Materials

High Temperature Furnace (HTF) Carbolite HTF 18 1800C HTF used to melt samples
High Temperature Drop Furnace CM Inc. 1706 BL 1700C Drop Furnace used to melt samples
Graphite Crucibles SCP Science 040-060-041 27 mL high purity graphite crucibles (10 pack)
Crucible Tongs Grainger 5ZPV0 26 in, stainless steele tongs for handling crucibles
Heat Resistent Gloves Grainger 8814-09 Gloves used to protect hands from heat during sample intro/removal
Mortar & Pestle Fisherbrand S337631 300 mL, Ceramic mortar and pestle for powdering and mixing
Micro Balance Grainger 8NJG2 220g Cap, high precision scale for measuring powder mass
Spatulas Fisherbrand 14374 Metal spatulas for measure small quantities of powder
SiO2 Sigma-Aldrich 274739-5KG Quartz Sand  CAS Number: 14808-60-7
Al2O3 Sigma-Aldrich 11028-1KG Aluminum Oxide Powder  CAS Number: 1344-28-1
CaO Sigma-Aldrich 12047-2.5KG Calcium Oxide Powder  CAS Number: 1305-78-8
FeO Sigma-Aldrich 400866-25G Iron Oxide Powder  CAS Number: 1345-25-1
MgO Sigma-Aldrich 342793-250G Magnesium Oxide Powder  CAS Number: 1309-48-4
Na2O Sigma-Aldrich 36712-25G Sodium Oxide Powder  CAS Number: 1313-59-3
KOH Sigma-Aldrich 278904-250G Potasium Hydroxide Pellets  CAS Number: 12030-88-5
MnO Sigma-Aldrich 377201-500G Manganese Oxide Powder  CAS Number: 1344-43-0
TiO2 Sigma-Aldrich 791326-5G Titanium Oxide Beads  CAS Number: 12188-41-9

References

  1. Carnesdale, A. . Nuclear Forensics: A Capability at Risk (Abbreviated Version). , (2010).
  2. Garrison, J. R., Hanson, D. E., Hall, H. L. Monte Carlo analysis of thermochromatography as a fast separation method for nuclear forensics. J Radioanal Nucl Chem. 291 (3), 885-894 (2011).
  3. Molgaard, J. J., et al. Development of synthetic nuclear melt glass for forensic analysis. J Radioanal Nucl Chem. 304 (3), 1293-1301 (2015).
  4. Fluegel, A. Modeling of Glass Liquidus Temperatures using Disconnected Peak Functions. , (2007).
  5. Oldham, C. J., Molgaard, J. J., Auxier, J. D., Hall, H. L. Comparison of Nuclear Debris Surrogates Using Powder X-Ray Diffraction. , (2014).
  6. Liezers, M., Fahey, A. J., Carman, A. J., Eiden, G. C. The formation of trinitite-like surrogate nuclear explosion debris ( SNED ) and extreme thermal fractionation of SRM-612 glass induced by high power CW CO 2 laser irradiation. J Radional Nucl Chem. 304 (2), 705-715 (2015).
  7. Harvey, S. D., et al. Porous chromatographic materials as substrates for preparing synthetic nuclear explosion debris particles. J Radioanal Nucl Chem. 298 (3), 1885-1898 (2013).
  8. Hanni, J. B., et al. Liquidus temperature measurements for modeling oxide glass systems relevant to nuclear waste vitrification. J Mater Res. 20 (12), 3346-3357 (2005).
  9. Weber, W. J., et al. Radiation Effects in Glasses Used for Immobilization of High-Level Waste and Plutonium Disposition. J Mater Res. 12 (8), 1946-1978 (1997).
  10. Eby, N., Hermes, R., Charnley, N., Smoliga, J. A. Trinitite-the atomic rock. Geol Today. 26 (5), 180-185 (2010).
  11. Bellucci, J. J., Simonetti, A. Nuclear forensics: searching for nuclear device debris in trinitite-hosted inclusions. J Radioanal Nucl Chem. 293 (1), 313-319 (2012).
  12. Ross, C. S. . Optical Properties of Glass from Alamogordo, New Mexico. , (1948).
  13. Giminaro, A. V., et al. Compositional planning for development of synthetic urban nuclear melt glass. J Radional Nucl Chem. , (2015).
  14. Cook, M. T., Auxier, J. D., Giminaro, A. V., Molgaard, J. J., Knowles, J. R., Hall, H. L. A comparison of gamma spectra from trinitite versus irradiated synthetic nuclear melt glass. J Radioanal Nucl Chem. , (2015).
  15. Fahey, J., Zeissler, C. J., Newbury, D. E., Davis, J., Lindstrom, R. M. Postdetonation nuclear debris for attribution. Proc Natl Acad Sci U S A. 107 (47), 20207-20212 (2010).
  16. Bellucci, J. J., Simonetti, A., Koeman, E. C., Wallace, C., Burns, P. C. A detailed geochemical investigation of post-nuclear detonation trinitite glass at high spatial resolution: Delineating anthropogenic vs. natural components. Chem Geol. 365, 69-86 (2014).
  17. Donohue, P. H., Simonetti, A., Koeman, E. C., Mana, S., Peter, C. Nuclear Forensic Applications Involving High Spatial Resolution Analysis of Trinitite Cross-Sections. J Radioanal Nucl Chem. , (2015).
  18. Eaton, G. F., Smith, D. K. Aged nuclear explosive melt glass: Radiography and scanning electron microscope analyses documenting radionuclide distribution and glass alteration. J Radioanal Nucl Chem. 248 (3), 543-547 (2001).
  19. Kersting, A. B., Smith, D. K. . Observations of Nuclear Explosive Melt Glass Textures and Surface Areas. , (2006).
  20. . . IAEA Safeguards Glossary. , (2001).
  21. Glasstone, S., Dolan, P. . Effects of Nuclear Weapons. , (1977).
  22. Carney, K. P., Finck, M. R., McGrath, C. A., Martin, L. R., Lewis, R. R. The development of radioactive glass surrogates for fallout debris. J Radioanal Nucl Chem. 299 (1), 363-372 (2013).
  23. Molgaard, J. J., Auxier, J. D., Hall, H. L. A Comparison of Activation Products in Different Types of Urban Nuclear Melt Glass. , (2015).

Play Video

Cite This Article
Molgaard, J. J., Auxier II, J. D., Giminaro, A. V., Oldham, C. J., Gill, J., Hall, H. L. Production of Synthetic Nuclear Melt Glass. J. Vis. Exp. (107), e53473, doi:10.3791/53473 (2016).

View Video