Inter-cellular communication is critical for controlling various physiological activities within and outside the cell. This paper describes a protocol for measuring the spatio-temporal nature of single cell secretions. To achieve this, a multidisciplinary approach is used which integrates label-free nanoplasmonic sensing with live cell imaging.
Inter-cellular communication is an integral part of a complex system that helps in maintaining basic cellular activities. As a result, the malfunctioning of such signaling can lead to many disorders. To understand cell-to-cell signaling, it is essential to study the spatial and temporal nature of the secreted molecules from the cell without disturbing the local environment. Various assays have been developed to study protein secretion, however, these methods are typically based on fluorescent probes which disrupt the relevant signaling pathways. To overcome this limitation, a label-free technique is required.
In this paper, we describe the fabrication and application of a label-free localized surface plasmon resonance imaging (LSPRi) technology capable of detecting protein secretions from a single cell. The plasmonic nanostructures are lithographically patterned onto a standard glass coverslip and can be excited using visible light on commercially available light microscopes. Only a small fraction of the coverslip is covered by the nanostructures and hence this technique is well suited for combining common techniques such as fluorescence and bright-field imaging.
A multidisciplinary approach is used in this protocol which incorporates sensor nanofabrication and subsequent biofunctionalization, binding kinetics characterization of ligand and analyte, the integration of the chip and live cells, and the analysis of the measured signal. As a whole, this technology enables a general label-free approach towards mapping cellular secretions and correlating them with the responses of nearby cells.
Inter-cellular communication is crucial for the regulation of many physiological activities both inside and outside the cell. A variety of proteins and vesicles can be secreted that subsequently trigger complex cellular processes such as differentiation, wound healing, immune response, migration, and proliferation.1-5 Malfunctions of inter-cellular signaling pathways have been implicated in numerous disorders including cancer, atherosclerosis, and diabetes, to name a few.
The optimal cell secretion assay should be capable of spatially and temporally mapping the secreted protein of interest without disrupting the relevant signaling pathways. In this way causal relationships between the concentration profiles and the response of the receiving cells can be inferred. Unfortunately, many of the most commonly used fluorescent-based techniques do not meet these criteria. Fluorescent fusion proteins can be used to tag the analyte within the cell but can disrupt the secretory pathway, or if secreted, results in a diffuse glow outside the cell which is difficult to quantify. Fluorescent immunosandwich-based assays are the most commonly used techniques for detecting cellular secretions but typically require the isolation of individual cells.6-11 In addition, the introduction of the sensing antibody typically halts or ends the experiment and the size of the antibody labels, 150 kDa for IgG, is an impediment to downstream signaling.
Because of these roadblocks it is preferable that a label-free technique be utilized to image protein secretions and amongst existing label-free technologies, surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR) sensors are excellent candidates.12-17 These sensors have been widely used for analyte binding studies of proteins, exosomes and other biomarkers.18-24 In the case of LSPR, the plasmonic nanostructures can be patterned lithographically onto glass coverslips and excited using visible light via standard wide-field microscopy configurations. Due to their nanoscale footprint, the majority of the glass substrate is available for common imaging techniques such as bright-field and fluorescence microscopy making these probes well suited for integration with live-cell microscopy.25-28 We have demonstrated the real-time measurement of antibody secretions from hybridoma cells using functionalized gold plasmonic nanostructures with spatial and temporal resolutions of 225 msec and 10 µm, respectively. The basic chip configuration is illustrated in Figure 1.28 The output light path of the microscope is split between a CCD camera used for imagery and a fiber-optically coupled spectrometer for the quantitative determination of fractional occupancy of a given array of nanostructures (Figure 2).
The protocol presented in this paper describes the experimental design for the real-time measurement of single cell secretions while simultaneously monitoring the response of the cells using the standard bright-field microscopy. The multidisciplinary approach includes the fabrication of nanostructures, functionalization of the nanostructures for the high affinity binding of analytes, surface optimization for both minimizing non-specific binding and characterizing kinetic rate constants using a commercial Surface Plasmon Resonance (SPR) instrument, integration of cell lines onto the substrate, and the analysis of imagery and spectral data. We anticipate this technique to be an enabling technology for the spatio-temporal mapping of cell secretions and their causal relationships with receiving cells.
1. Nanostructure Fabrication
2. Chip Cleaning and Application of Self-assembled Monolayer
3. Surface Functionalization and Kinetic Characterization
Note: Use the functionalized chip in the commercial SPR instrument to characterize the kinetic rate constants between the ligand and the analyte, as well as to study the resistance of SAM to non-specific binding. There is a wide range of flow rates and microfluidic designs that allow for efficient surface functionalization. Since we have a commercially available SPR we standardized around its recommended flow rates. We note that these flow rates are typical of all SPR instruments and so are not restrictive. The SPR instrument is not a necessity since all functionalization can be done directly on the LSPR chip, but it did reduce our work load because it is a multiplexed instrument whereas our LSPR microfluidic setup is not.
4. LSPR General Settings
5. LSPR Imaging of Anti-c-myc Secretions from 9E10 Hybridoma Cells
Note: The hybridoma cell line used for this study express anti-c-myc antibody constitutively and hence do not require a chemical trigger
In a typical live cell secretion study there are multiple modes of data collection taking place. Figure 3 shows an overlay of an LSPRi image, which highlights the square arrays, and a transmitted light illuminated image which highlights the cell at lower left. Data is typically collected over a 3-hr period followed by the introduction of a saturating solution of the analyte for the normalization calculation described below. Fluorescence imagery can also be integrated into the data collection routine by the automated switching of a filter cube. In Figure 4 a cell stained with the fluorescent membrane dye rhodamine DHPE exhibits lamellipodia-like extensions (arrows). If such extensions were to overlap with the arrays they would give a false-positive for protein secretion. Having multiple modes of imagery can help identify such occurrences.
Figure 5 shows spectrometry data before and after the introduction of a saturating solution (400 nM) of commercially purchased anti-c-myc antibodies to the c-myc functionalized arrays. No cells were present in this experiment. The spectrum displays both a red shift and an increase in intensity. The difference between the areas under the two curves results in an increase in the array image intensity in LSPRi mode on the CCD camera. A non-linear least squares data analysis approach has been developed to infer fractional occupancy of surface bound ligands from the spectra.30,31
At the end of the experiment, the saturated intensity values (i.e., fractional occupancy ≈ 1) are used to calculate a normalized response for each array using the following formula:
Where are the normalized intensity at time point t, initial intensity at the start of the experiment, final saturated intensity, and measured intensity of the array at time point t, respectively.
Normalized values from two arrays are shown in Figure 6. One array was within 10 µm of the cell under investigation while the other, used as a control, was a distance of 130 µm from the cell. The sudden increase in the normalized response of the array closest to the cell relative to the flat response of the control array is indicative of a localized burst of secreted antibodies.
Figure 1. Sensor Design. A drawing depicting the geometry of a typical live cell secretion experiment. The cell (blue spheroid) is deposited on to the LSPR chip which contains arrays of biofunctionalized gold nanostructures. In the zoomed-in view, the cell secretion of interest, in this case antibodies shown as Y-shaped molecules, is measured as they bind to the surface of the functionalized nanostructures. Please click here to view a larger version of this figure.
Figure 2. Optical Setup. The illuminated light from a halogen lamp is first filtered by a long pass filter (LP). The light is linearly polarized (P1) and illuminates the sample via a 40X/1.4 NA objective. The scattered light is collected by the objective and passed through a crossed polarizer (P2). A 50/50 beam splitter (BS) is inserted into the collected light path for simultaneous spectroscopic and imagery analysis. Top Right: An atomic force microscopy image of 9 individual nanostructures separated by a pitch of 300 nm. Please click here to view a larger version of this figure.
Figure 3. Live Cell LSPRi Study. A merged transmitted light and LSPRi image showing a single hybridoma cell (lower left) surrounded by 12 arrays. This is a contrast enhanced image. Scale bar is 10 µm. Please click here to view a larger version of this figure.
Figure 4. Live Cell Fluorescence Study. A fluorescent false color image of a single hybridoma cell stained with rhodamine DHPE, which is a membrane dye. In fluorescent imaging mode the arrays are not generally visible, however, a nearby array is observable here as a black square in the lower right corner. The cell can be seen to be separated from the array although tentacle-like extensions (possibly filopodia or lamellipodia) are extending outward from the cells (arrows). Scale bar is 10 µm. Please click here to view a larger version of this figure.
Figure 5. Spectral Modality. The spectra obtained from a c-myc functionalized array before and after the introduction of 400 nM solution of anti-c-myc antibodies. No cells were present in this study. Please click here to view a larger version of this figure.
Figure 6. Single Cell Secretion. The response of an array located within 15 µm of a single cell and one located 130 µm away (Control). Scale bar is 10 µm. Please click here to view a larger version of this figure.
The LSPR imaging technique described in this work has numerous advantages over more traditional methodologies for detecting cell secretions. First, the time resolution of our technique is on the order of seconds whereas the commercial alternative, an immunosandwhich assay known as EliSpot, has a typical time resolution of 2 to 3 days.7,32 As a result we were able to resolve sudden changes in the rate of protein secretion, such as that shown in Figure 6. Second, having arrays distributed over the chip allows for the secreted signal to be tracked in space and time which enables more rigorous comparisons to diffusion-based models of cell secretion. In addition, arrays like the control array shown in Figure 6 can be used to subtract out global changes in the image that typically arise from instrumental factors such as focus drift. Third, our technique requires no modification of the cells. If desired, the experiment can incorporate commonly used tags such as fluorescent proteins, but if there is concern that such tags may negatively affect cell viability or homeostasis the label-free nature of our approach does not require them. Fourth, using the spectroscopic data we have demonstrated that quantitative information regarding the fractional occupancy of surface bound ligands can be calculated.
There are numerous alternative methods to EBL for fabricating metallic nanoparticles. However, we have found that the EBL provides considerable flexibility for optimizing nanostructure and array dimensions to best suit the optics and the cells under investigation. Also critical is the fact that the chips can be readily regenerated by plasma ashing. In this way, a typical chip can be used dozens of times. Biofunctionalization details must be modified for the specific application. The protocol presented here conjugated the surface with relatively small c-myc peptide ligands. Larger ligands such as whole antibodies typically require more spacing and thus a higher SPO to SPN/SPC ratio. Regardless, a well formed SAM layer is essential for preventing non-specific binding in live-cell experiments. In general, larger molecular weight analytes are more readily detected by LSPR. Thus, in its single-cell manifestation, this technique may not be appropriate for detecting the secretion of small proteins, such as cytokines.
The current setup has been used for studying individual non-adherent cells. There are significant number of secreted signaling proteins and vesicles to which the results reported in this work are directly applicable. For example carcinoembryonic antigen (CEA) which for decades now has been a diagnostic marker for cancer. Colon cancer cells are known to secrete CEA at the rates of thousands of molecules/cell/hr and the molecular weight is 180 kDa which exceeds that of IgG antibodies. CEA is believed to be involved in autocrine and paracrine signaling pathways but the spatio-temporal nature of these secretions have never been measured. Our technique can directly address these signaling questions. An extension of this work will be to measure the spatio-temporal nature of CEA secretion from single cells.33 Future work will also focus on integrating LSPRi with two and three dimensional cell cultures of adherent cells. By incorporating multiplexed arrays capable of detecting a number of secreted proteins in parallel, this technique has the potential to open a new window into cell secretions and how they influence neighboring cells.
The authors have nothing to disclose.
The authors have nothing to disclose.
25mm diameter glass coverslips | Bioscience Tools | CSHP-No1.5-25 | 170±5 µm is optimal |
Poly-methyl methacrylate | Microchem | PMMA 950 A4 | |
Ethyl lactate methyl metacrylate | Microchem | MMA EL6 | |
Electron beam evaporator | Temescal | FC-2000 | |
Electron beam lithography | Raith | Series 150 | |
Ethanol | Sigma-Aldrich | 459836 | |
Acetone | Sigma-Aldrich | 320110 | |
CR-7 chromium etchant | Cyantek | CR-7 | |
Scanning electron microscope | Zeiss | Ultra 55 | |
Atomic force microscope | Veeco | Nanoscope III | |
Plasma ashing system | Technics | Series 85 RIE | |
SH-(CH2)8-EG3-OH (SPO) | Prochimia | TH 001-m8.n3-0.2 | |
SH-(CH2)11-EG3-COOH (SPC) | Prochimia | TH 003m11n3-0.1 | |
SH-(CH2)11-EG3-NH2 (SPN) | Prochimia | TH 002-m11.n3-0.2 | |
Surface plasmon resonance system | Biorad | XPR36 | |
Bare gold chip | Biorad | GLC chip | Plasma ashed to remove the monolayer |
1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide | Thermo | 22980 | |
N-hydroxysuccinimide (NHS) | Thermo | 24510 | |
Pentylamine-Biotin | Thermo | 21345 | |
Ethanolamine | Sigma-Aldrich | E9508 | |
Neutraavidin | Thermo | 31000 | |
Phosphate buffered saline | Thermo | 28374 | |
Tween 20 | Sigma-Aldrich | P2287 | |
Inverted microscope | Zeiss | Axio Observer | Microscope is equipped with 40X oil immersion objective; CO2 and humidity incubation from Pecon GmbH |
CCD camera | Hamamatsu | Orca R2 | Thermoelectrically cooled (16 bit) |
Spectrometer | Ocean Optics | QE65Pro | |
Spectrasuite | Ocean Optics | version1.4 | |
c-myc peptide HyNic Tag | Solulink | SP-E003 | |
monoclonal anti-c-myc antibody | Sigma-Aldrich | M4439 | |
Hybridoma cell line | ATCC | CRL-1729 | |
Antibiotic Antimycotic Solution (100×) | Sigma-Aldrich | A5955 | |
Serum free media RPMI 1640 | Invitrogen | 11835-030 | |
Fetal bovine serum | ATCC | 30-2020 | |
Rhodamine DHPE | Life Technologies | L-1392 |