Summary

最適化された<em>元OVO</em>開発の進んだ段階にニワトリ胚の培養

Published: January 24, 2015
doi:

Summary

Viewing and accessing the chicken embryo during development can be challenging. We have developed an ex ovo method that is simple, cost effective, and can easily be used in a classroom or research setting. This method provides access to the embryo into late stages of embryonic development (HH 40).

Abstract

Research in anatomy, embryology, and developmental biology has largely relied on the use of model organisms. In order to study development in live embryos model organisms, such as the chicken, are often used. The chicken is an excellent model organism due to its low cost and minimal maintenance, however they present observational challenges because they are enclosed in an opaque eggshell. In order to properly view the embryo as it develops, the shell must be windowed or removed. Both windowing and ex ovo techniques have been developed to assist researchers in the study of embryonic development. However, each of the methods has limitations and challenges. Here, we present a simple, optimized ex ovo culture technique for chicken embryos that enables the observation of embryonic development from stage HH 19 into late stages of development (HH 40), when many organs have developed. This technique is easy to adopt in both undergraduate classes and more advanced research laboratories where embryo manipulations are conducted.

Introduction

Ex ovo culturing has played an important role in the study of development of the chicken1, 2. This culturing method has been used to study neurological diseases, limb development, craniofacial development, and as a model to investigate malformations associated with diabetes 3, 4, 5.

There are many variations to the ex ovo technique. The most common approach is to use a Styrofoam cup6,7,8 or a glass bowl5. In these methods, the cup or bowl is lined with plastic wrap to cradle the embryo, a lid is placed on the cup, and the embryo is then placed in an incubator with appropriate humidity6. This set up however, can be technically challenging. The first challenge is the plastic wrap that is used to cradle the embryo. This wrap is difficult to work with and often does not adhere to the cup very well. To solve this problem, an elastic band is placed around the cup to hold the wrap in place. Despite this, the wrap can still slip, which is fatal to the embryo. The plastic wrap has the potential to tear or get punctured by forceps or needles that may be used during embryo manipulations and observations. Finally, this set-up is not very stable and students can easily knock the cups over. The height of the cups also makes it very difficult to place the embryo under a stereomicroscope, which has a limited objective to stage height. These challenges make it difficult for undergraduate students to work with live chick embryos in teaching labs, such as advanced developmental biology courses.

The above challenges in the ex ovo method has meant that researchers turn to the windowing method 9,10 to view embryonic chick development. In this technique, a hole or “window” is made in the eggshell overlying the embryo. The hole can be re-sealed with tape or wax9 to allow for further embryonic development. Although the windowing method has some advantages, such as the ability to view embryonic development and easy maintenance, this method also has several limitations. The first is that the window needs to be fairly large in order to view the entire embryo (especially at late stages). Secondly, large windows are difficult to seal; an improper seal will lead to sterility and survivability problems. Using molten wax as a sealant adds another inconvenient and messy step to the protocol. Therefore, although the windowing method may be ideal for chick embryos at young stages (HH 11 – HH 27), viewing the entire embryo at late stages is not easily accomplished.

Here, we describe an improved and simple ex ovo culturing technique11 that avoids the need for high tech equipment, is easy to handle under a stereomicroscope, gives the embryo enough support to perform microscopic manipulations, and enables researchers to view the growth of the embryo in its entirety well into the later stages of development (up to HH 40-41). With these advances in the ex ovo technique, individuals gain access to a more complete understanding of embryonic development. For instance, growth into later stages allows individuals to observe developmental processes that do not occur until this time point, such as ossification, feather development, and advanced limb and eye development. The entire embryo and extraembryonic membranes and vasculature are clearly visible. More advanced research can also be performed, such as, embryonic manipulations (i.e., implanting beadssoaked in inhibitors or inserting barriers between tissue layers), and researchers are then able to observe the effect of the manipulations in later stage embryos.

Protocol

注:すべての物資を表1に記載されています。 1.鶏胚の保存 ガルスは約40%の湿度で37°Cので水平ガルスと1日1回または2回卵を回し株の鶏の卵をインキュベートする。卵を回すと、卵殻に付着するの胚を防止することが重要である。 4 O Cで卵を保つ、前にそうでない胚は卵黄塊に腹側に位置され、さらにステップ3で卵を開くに?…

Representative Results

方法OVOこれexは ( 図1Aおよび1B)開発の後期段階(HH 40-41)、開発の初期段階(HH 19/20)からの胚を観察することができます。 HH 19-20で培養物を設定するには、培養液中の胚の生存性を向上させます。生存性、培養中、ステージ21の後に非常に低い(53 HPF前)を回し頭に先立ち、胚が少なく、完全な胚が得られるように、取り外す上のシェルにより固執す?…

Discussion

利点と課題を持っているの両方を培養し、ウィンドウイングOVO例 。ここでは、メソッドOVO発泡スチロールのカップEXとここに示した方法OVO私たちの最適化されたのウィンドウ操作方法の利点と課題を比較する。我々の方法は、学部教授の研究室のクラスで使用することがさらに非常に簡単に作る方法1、2、3、OVO伝統EXに操作と開発の後…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我々は彼の撮影中の作業と、この原稿のビデオ部分を編集するためのマウントセントビンセント大学のポール·ポワリエ、メディアプロデューサーを、感謝したいと思います。当社は、資金調達のためにカナダの自然科学工学研究評議会を承認。

Materials

Penicillin/Streptomycin Sigma P4458 Make small aliquots to avoid freeze/thaw events
Square Petri Dish N/A N/A 9.5 cm x 9.5 cm
Weigh Boat Fischer Scientific 8732113 88 x 88 x 23 mm
Ziplock container Ziplock N/A 12 cm x 12 cm x 6 cm

References

  1. Auerbach, R., Kubai, L., Knighton, D., Folkman, J. A simple procedure for the long-term cultivation of chicken embryos. Dev. Biol. 41, 391-394 (1974).
  2. Gennaro, L. D., Packard, D. S., Stach, R. W., Wagner, B. J. Growth and differentiation of chicken embryos in simplified shell-less cultures under ordinary conditions of incubation. Growth. 44, 343-354 (1980).
  3. Tufan, C. A., Akdogan, I., Adiguzel, E. Shell-less culture of the chick embryo as a model system in the study of developmental neurobiology. Neuroanat. 3, 8-11 (2004).
  4. Duench, K., Franz-Odendaal, T. A. BMP and Hedgehog signaling during the development of scleral ossicles. Dev. Biol. 365 (1), 251-258 (2012).
  5. Datar, S., Bhonde, R. R. Shell-less Chick Embryo Culture as an Alternative in vitro Model to Investigate Glucose-Induced Malformation in Mammalian Embryos. Rev Diabet Stud. 2 (4), 221-227 (2005).
  6. Fisher, C. J. Chick embryos in shell-less culture. Tested studies for laboratory teaching. , (1983).
  7. Dunn, B. E. Technique for shell-less culture of the 72-hour avian embryo). Poultry Science. 53, 409-412 (1974).
  8. Yalcin, H., Shekhar, A., Rane, A. A., Butcher, J. T. An ex-ovo chicken embryo culture system suitable for imaging and microsurgery applications. J. Vis. Exp. (44), (2010).
  9. Silver, P. H. S. Special problems of experimenting in ovo on the early chick embryo, and a solution. J Embryol Exp Morph. 8 (4), 369-375 (1960).
  10. Spurlin, J., Lwigale, P. A technique to increase accessibility to late-stage chick embryos for in ovo manipulations. Dev. Dyn. 242 (2), 148-154 (2012).
  11. Dorrell, M. I., et al. Ex ovo model for directly visualizing chicken embryo development. American Biology Teacher. 74 (9), (2012).
  12. Hamburger, V., Hamilton, H. L. A series of normal stages in the development of the chick embryo. J. Morph. 88, 49-92 (1951).
  13. Drossopoulou, G., et al. A model for anteroposterior patterning of the vertebrate limb based on sequential long-and short-range Shh signaling and Bmp signaling. Development. , 127-1337 (2000).
  14. Sys, G. M., et al. The in ovo CAM-assay as a xenograft model for sarcoma. J. Vis. Exp. (77), e50522 (2013).
  15. Franz-Odendaal, T. Towards understanding the development of scleral ossicles in chicken, Gallus gallus. Dev. Dyn. 237, 3240-3251 (2008).

Play Video

Cite This Article
Cloney, K., Franz-Odendaal, T. A. Optimized Ex-ovo Culturing of Chick Embryos to Advanced Stages of Development. J. Vis. Exp. (95), e52129, doi:10.3791/52129 (2015).

View Video