We describe the production and characterization of nanoparticles and microparticles composed of poly(lactic-co-glycolic acid) using vitamin E-TPGS as an emulsifier. By varying formulation parameters such as the concentration of emulsifier, it is possible to produce nanoparticles with mean diameters ranging from 220 nm to 1.98 µm.
Poly(lactic-co-glycolic acid) (PLGA) is a biocompatible member of the aliphatic polyester family of biodegradable polymers. PLGA has long been a popular choice for drug delivery applications, particularly since it is already FDA-approved for use in humans in the form of resorbable sutures. Hydrophobic and hydrophilic drugs are encapsulated in PLGA particles via single- or double-emulsion. Briefly, the drug is dissolved with polymer or emulsified with polymer in an organic phase that is then emulsified with the aqueous phase. After the solvent has evaporated, particles are washed and collected via centrifugation for lyophilization and long term storage. PLGA degrades slowly via hydrolysis in aqueous environments, and encapsulated agents are released over a period of weeks to months. Although PLGA is a material that possesses many advantages for drug delivery, reproducible formation of nanoparticles can be challenging; considerable variability is introduced by the use of different equipment, reagents batch, and precise method of emulsification. Here, we describe in great detail the formation and characterization of microparticles and nanoparticles formed by single- or double-emulsion using the emulsifying agent vitamin E-TPGS. Particle morphology and size are determined with scanning electron microscopy (SEM). We provide representative SEM images for nanoparticles produced with varying emulsifier concentration, as well as examples of imaging artifacts and failed emulsifications. This protocol can be readily adapted to use alternative emulsifiers (e.g. poly(vinyl alcohol), PVA) or solvents (e.g. dichloromethane, DCM).
Polymers have become increasingly popular drug delivery vehicles in the last several decades for applications ranging from targeted tumor therapy1 to modulation of the immune system2. Polymer-encapsulated or conjugated drugs are frequently more effective than their freely delivered counterparts, since polymer-associated drug is protected from degradation. This protection translates to a longer biological half-life and potentially improved efficacy with reduced systemic side effects3-5.
Poly(lactic-co-glycolic acid) (PLGA) exhibits many of the ideal properties of a nanoscale delivery system, providing long term release of the encapsulated agent and degrading into the biocompatible products of lactic and glycolic acid . Small molecules, proteins, and nucleic acids that are encapsulated in PLGA have demonstrated enhanced activity in a variety of disease applications8. Importantly, the material platform facilitates easy customization of features such as size, charge, and surface display of ligands for targeting particles to specific tissues or for imaging purposes. Because PLGA is already used in humans in the form of biodegradable sutures (e.g. Purasorb, Purac Biomaterials, and Vicryl, Ethicon Inc.), the potential for clinical translation is high.
Oil-water (single) or water-oil-water (double) emulsion is one method by which PLGA can be used to encapsulate hydrophobic and hydrophilic drugs in micro- or nano-scale form. Briefly, PLGA is dissolved into an organic phase (oil) that is emulsified with a surfactant or stabilizer (water). Hydrophobic drugs are added directly to the oil phase, whereas hydrophilic drugs (water) may be first emulsified with the polymer solution prior to formation of particles. High intensity sonication bursts facilitate the formation of small polymer droplets. The resulting emulsion is added to a larger aqueous phase and stirred for several hours, which allows the solvent to evaporate. Hardened nanoparticles are collected and washed by centrifugation (Figure 1).
Here, we describe a technique for making PLGA nanoparticles using single and double emulsion, with ethyl acetate (EtAc) as the solvent and vitamin E- D-α-Tocopherol polyethylene glycol succinate (TPGS) as the emulsifying agent. The use of vitamin E-TPGS offers several possible advantages over other types of stabilizing agents (e.g. poly(vinyl alcohol), PVA), including improved emulsification and encapsulation efficiency. Other groups have reported advantages of Vitamin E-TPGS, including the inhibition of P-gp, a transmembrane efflux protein, which is commonly overexpressed on cancer cells and known to contribute to drug resistance by shuttling drugs out of target cells. Additionally, we demonstrate how to characterize and size the particles using scanning electron microscopy (SEM) and provide further guidance on size modification via alteration of the protocol.
PLGA particles are commonly prepared by single- or double-emulsion, a method that provides the ability to customize particle characteristics such as size, encapsulant, and surface properties7. These properties and others depend on many variables, including solvent type, feed ratios, emulsification method, and emulsifier type. However, in our experience, it is possible for a single experimenter to produce particles with consistent properties. Using the same protocol, a well-trained experimenter produced seven separate batches of nanoparticles with the following mean diameters: 317 nm±99, 342 nm±112, 298 nm±104, 361 nm±110, 339 nm±115, 360 nm±123, and 364 nm±110. Averaging the well-trained experimenter's batches yields a mean diameter of 340 nm±25 and mean within-batch standard deviation of 110 nm±8. A second experimenter, trained by the first, used the same protocol to produce nanoparticles with an average diameter of 328 nm±138. However, a third experimenter, who had been making nanoparticles independently for several months, followed the same protocol to produce nanoparticles with an average diameter of 220 nm±70. Thus, it is possible to make particles with an expected range of diameters, but this depends on exact replication of subtle experimental technique. Pooling batches may enable production of large quantities of nanoparticles with identical aggregate properties. For example, when we surface modify nanoparticles for in vitro or in vivo study, multiple (up to 6) 200 mg batches are prepared, washed, collected, mixed into a single tube, and then divided for surface modification. This ensures that nanoparticle size, drug loading, charge, and fraction of surface sites available for modification will be comparable between two treatment groups. In another example, if the variable of interest is drug efficacy with different agents being loaded into different batches of nanoparticles, it is important to measure and control for variability in drug loading. It is critical that particle properties be measured for each batch of particles produced, and experiments to be designed and replicated to control for batch-to-batch variability.
Complete emulsion of the organic and aqueous phases is critical for forming small particles. Poly(vinyl alcohol) (PVA) is perhaps the most commonly used emulsifier. We and others have used a variety of emulsifying and stabilizing agents, including vitamin E-TPGS9, PVA14, spans15, and poloxamers16 (for thorough discussion of the wide range of agents used for production of PLGA particles, see review by Wischke et al.17). Properly emulsified polymer will appear as a homogenous, milky-white/opaque solution. A poor (or "broken") emulsion will show macroscopic heterogeneity or granularity, and it may even separate into two visually distinct layers in the tube. This generally indicates a failure to form nanoparticles. The emulsion may break following step 1.9 if it is not immediately transferred to the ultrasonicator. If this occurs, vortex again until homogenous and immediately proceed to the sonicator. Separation should not occur following the sonication step (1.10). Once the particles have been dispersed into a larger aqueous volume (step 1.11), the solution should be uniformly opaque to slightly translucent. The translucent quality will increase as particle size decreases, and a blue hue may be observed for very small nanoparticles. This hue might not be observed if particles encapsulate a drug. If the emulsion fails to disperse uniformly into the large aqueous volume or appears granular, the experiment should not proceed. It is normal to observe some variation in the appearance of the particle pellet, as well as its cohesion. Some pellets may resuspend upon mild vortexing, while others may take several minutes of water bath sonication. Resuspension should not take longer than 5 min. Lyophilized particles may take a variety of textures from cotton-like to free-flowing.
One of the many advantages of PLGA as a nanoparticle material is the ability to optimize the fabrication process to create the desired size of particle for the intended application. Larger nanoparticles will encapsulate a higher fraction of hydrophobic drug (relative to weight of polymer) than small nanoparticles, however, drug release kinetics may also be affected18-20. The size of nanoparticles has a direct effect on mechanisms of particle internalization by cells, as well as their distribution in tissue, which can result in dramatic differences in delivery effectiveness . For example, the mononuclear phagocyte system will tag and remove agents in systemic circulation that are larger than 1 μm. Small nanoparticles may be of interest for direct infusion into the brain, where larger nanoparticles would be trapped in the tight extracellular matrix; delivery of small nanoparticles might also facilitate passive targeting of tumors via the enhanced permeation and retention effect. Drug encapsulation efficiency varies widely, depending on the properties of the specific drug, the size of the particle, and the emulsifier (i.e. its solubility in water versus solvent). Single versus double emulsion will also affect drug loading and nanoparticle size. Encapsulation of hydrophobic agents via single emulsion may aid in the production of ultra-small nanoparticles, compared to the double emulsion method. We direct the reader to other resources for extensive discussion of this topic23-28. Lastly, alternative emulsification methods are available, including high-speed homogenization, and these other approaches may provide advantages for specific types of drugs or drug delivery applications29.
The single emulsion method presents an opportunity for variation of a wide range of formulation variables, each of which are capable of altering nanoparticle properties. For example, using dichloromethane (DCM) as a solvent instead will generally produce larger nanoparticles with a broader size distribution. Since ethyl acetate (EtAc) is miscible in water, the surface tension of the polymer droplet in the primary emulsion is decreased, producing smaller nanoparticles. DCM may be substituted for the same volume of EtAc. Alternative solvents or blends of solvents may be used to optimize drug encapsulation and particle properties. Other formulation parameters are also capable of altering particle size: for example, increasing solvent volume, solvent:polymer ratio, sonication intensity, or speed/duration of centrifugation will all result in a decrease in the size of collected particles. It is possible to size fractionate particles by performing sequential centrifugation (e.g. a quick, low speed centrifugation to first remove larger particles, followed by a longer spin to collect ultra-small particles) or filtering .
Here, we describe formulation parameters that enable preparation of PLGA particles with average diameters ranging from 220 nm to 1.98 μm. These methods for producing particles composed of PLGA may be used to optimize particle design (size, encapsulant, and surface properties) for future drug delivery application in vitro or in vivo.
The authors have nothing to disclose.
The authors have no acknowledgements.
Poly(lactic co-glycolic acid) (PLGA) | Lactel | B6010-2P | Inherent Viscosity: 0.55-0.75 dl/g |
Ethyl acetate (EtAc) | Sigma | 270989 | |
Methylene chloride (DCM) | |||
Vitamin E TPGS | Sigma | 57668 | |
Poly(vinyl alcohol) | 87-89% hydrolized, 30,000-70,000 Da | ||
Equipment | |||
Sonic Dismembrator | Fisher Scientific | Model 705 | 700 W (Ultrasonicator) |
Sonicator tip | Fisher Scientific | 1/8 in | |
Vortexer | VWR | 58816-121 | |
Multiposition stirrer | Corning | MP5I | |
Ultracentrifuge | Beckman-Coulter | L8-80M | |
Fixed angle rotor | Beckman-Coulter | 50.2TI | |
Water bath sonicator | Fisher Scientific | FS30 | |
Lyophilizer | Millrock | BT85 |