Summary

Kemirgenler Faaliyet teker Running kayıt ve Sirkadiyen Rhythms Analizi

Published: January 24, 2013
doi:

Summary

Circadian rhythms in voluntary wheel-running activity in mammals are tightly coupled to the molecular oscillations of a master clock in the brain. As such, these daily rhythms in behavior can be used to study the influence of genetic, pharmacological, and environmental factors on the functioning of this circadian clock.

Abstract

When rodents have free access to a running wheel in their home cage, voluntary use of this wheel will depend on the time of day1-5. Nocturnal rodents, including rats, hamsters, and mice, are active during the night and relatively inactive during the day. Many other behavioral and physiological measures also exhibit daily rhythms, but in rodents, running-wheel activity serves as a particularly reliable and convenient measure of the output of the master circadian clock, the suprachiasmatic nucleus (SCN) of the hypothalamus. In general, through a process called entrainment, the daily pattern of running-wheel activity will naturally align with the environmental light-dark cycle (LD cycle; e.g. 12 hr-light:12 hr-dark). However circadian rhythms are endogenously generated patterns in behavior that exhibit a ~24 hr period, and persist in constant darkness. Thus, in the absence of an LD cycle, the recording and analysis of running-wheel activity can be used to determine the subjective time-of-day. Because these rhythms are directed by the circadian clock the subjective time-of-day is referred to as the circadian time (CT). In contrast, when an LD cycle is present, the time-of-day that is determined by the environmental LD cycle is called the zeitgeber time (ZT).

Although circadian rhythms in running-wheel activity are typically linked to the SCN clock6-8, circadian oscillators in many other regions of the brain and body9-14 could also be involved in the regulation of daily activity rhythms. For instance, daily rhythms in food-anticipatory activity do not require the SCN15,16 and instead, are correlated with changes in the activity of extra-SCN oscillators17-20. Thus, running-wheel activity recordings can provide important behavioral information not only about the output of the master SCN clock, but also on the activity of extra-SCN oscillators. Below we describe the equipment and methods used to record, analyze and display circadian locomotor activity rhythms in laboratory rodents.

Protocol

1. Animal Housing Cage: In order to record the running-wheel activity of an individual rodent, each cage should house a single rodent and running-wheel. Because running wheels can be considered a form of enrichment, all rodents in any study should have similar access to a running wheel. Bedding changes: Animal handling as well as changes in cages or bedding can all have non-photic effects on circadian rhythms21-23, so, cages with mesh-flooring are idea…

Representative Results

Computer programs: Specialized computer programs are typically used in the generation of actograms and the calculation of circadian period. These programs include, but are not limited to, Actiview (Minimitter, Bend, OR) and Circadia. Actograms: Actograms provide a graphic illustration of the daily patterns of running-wheel activity. There are single-plotted (x-axis = 24 hr) and double-plotted (x-axis = 48 hr) actograms. Both methods plot sequential days from top to bottom, but double-plott…

Discussion

Monitoring daily activity rhythms using running wheels is the most commonly used and reliable method for assessing the output of the master circadian clock in nocturnal rodents. Wheel-running activity, however, is only one of many aspects of behavior and physiology that can be monitored continuously. Although the vast majority of running-wheel activity occurs during the night, over 30% of the total wakefulness occurs during the daytime25,26. Other endpoints can be used to assess circadian rhythms, including ge…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors would like to acknowledge salary awards, equipment grants, and operating funds from the Fonds de la recherche en santé Québec (FRSQ), Canadian Institutes of Health Research (CIHR), the Natural Sciences and Engineering Research Council of Canada (NSERC), and the Concordia University Research Chairs Program (CRUC), as well as the thoughtful feedback on this manuscript from Dr. Jane Stewart.

Materials

Name of the reagent Company Catalogue number Comments (optional)
Vitalview Card & Software Mini Mitter #855-0030-00 (Bend, OR, USA)
DP24 Dataport Mini Mitter #840-0024-00 (Bend, OR, USA)
QA4-Module Mini Mitter #130-0050-00 (Bend, OR, USA)
Magnetic Switch Mini Mitter #130-0015-00 (Bend, OR, USA)
C-50 Cable assembly Mini Mitter #060-0045-10 (Bend, OR, USA)
Rat running wheel assembly Mini Mitter #640-0700-00 (Bend, OR, USA)
Cage and tray support Mini Mitter #640-0400-00 (Bend, OR, USA)
Useable cut away cage Mini Mitter #664-2154-00 (Bend, OR, USA)
Grid floor for cage Mini Mitter #676-2154-00 (Bend, OR, USA)
Waste tray Mini Mitter #684-2154-00 (Bend, OR, USA)
Lamp housing Microlites Scientific #R-101 (Toronto, ON, Canada)
4W Fluorescent lamps Microlites Scientific #F4T5/CW (Toronto, ON, Canada)
Isolation chambers Custom built 28″H x 20″W x 28″D ½” Black Melamine.

References

  1. Pittendrigh, C. S., Daan, S. A Functional Analysis of Circadian Pacemakers in Nocturnal Rodents. V. Pacemaker Structure: A Clock for All Seasons. J. Comp. Physiol. 106, 333-355 (1976).
  2. Pittendrigh, C. S., Daan, S. A Functional Analysis of Circadian Pacemakers in Nocturnal Rodents. IV. Entrainment: Pacemaker as Clock. J. Comp. Physiol. 106, 291-331 (1976).
  3. Pittendrigh, C. S., Daan, S. A Functional Analysis of Circadian Pacemakers in Nocturnal Rodents. III. Heavy Water and Constant Light: Homeostasis of Frequency?. J. Comp. Physiol. 106, 267-290 (1976).
  4. Pittendrigh, C. S., Daan, S. A Functional Analysis of Circadian Pacemakers in Nocturnal Rodents. II. The Variability of Phase Response Curves. J. Comp. Physiol. 106, 253-266 (1976).
  5. Pittendrigh, C. S., Daan, S. A Functional Analysis of Circadian Pacemakers in Nocturnal Rodents. I. The Stability and Lability of Spontaneous Frequency. J. Comp. Physiol. 106, 223-252 (1976).
  6. Ralph, M. R., Foster, R. G., Davis, F. C., Menaker, M. Transplanted suprachiasmatic nucleus determines circadian period. Science. 247, 975-978 (1990).
  7. Moore, R. Y., Eichler, V. B. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 42, 201-206 (1972).
  8. Stephan, F. K., Zucker, I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc. Natl. Acad. Sci. U.S.A. 69, 1583-1586 (1972).
  9. Abe, M., et al. Circadian rhythms in isolated brain regions. J. Neurosci. 22, 350-356 (2002).
  10. Yamazaki, S., et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science. 288, 682-685 (2000).
  11. Lamont, E. W., Robinson, B., Stewart, J., Amir, S. The central and basolateral nuclei of the amygdala exhibit opposite diurnal rhythms of expression of the clock protein Period2. Proc. Natl. Acad. Sci. U.S.A. 102, 4180-4184 (2005).
  12. Amir, S., Lamont, E. W., Robinson, B., Stewart, J. A circadian rhythm in the expression of PERIOD2 protein reveals a novel SCN-controlled oscillator in the oval nucleus of the bed nucleus of the stria terminalis. J. Neurosci. 24, 781-790 (2004).
  13. Yoo, S. H., et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl. Acad. Sci. U.S.A. 101, 5339-5346 (2004).
  14. Guilding, C., Piggins, H. D. Challenging the omnipotence of the suprachiasmatic timekeeper: are circadian oscillators present throughout the mammalian brain?. Eur. J. Neurosci. 25, 3195-3216 (2007).
  15. Boulos, Z., Terman, M. Food availability and daily biological rhythms. Neurosci. Biobehav. Rev. 4, 119-131 (1980).
  16. Boulos, Z., Rosenwasser, A. M., Terman, M. Feeding schedules and the circadian organization of behavior in the rat. Behav. Brain Res. 1, 39-65 (1980).
  17. Verwey, M., Amir, S. Food-entrainable circadian oscillators in the brain. Eur. J. Neurosci. 30, 1650-1657 (2009).
  18. Davidson, A. J., Poole, A. S., Yamazaki, S., Menaker, M. Is the food-entrainable circadian oscillator in the digestive system?. Genes Brain Behav. 2, 32-39 (2003).
  19. Hara, R., et al. Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells. 6, 269-278 (2001).
  20. Damiola, F., et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14, 2950-2961 (2000).
  21. Mrosovsky, N. Phase response curves for social entrainment. J. Comp. Physiol. A. 162, 35-46 (1988).
  22. Cain, S. W., et al. Reward and aversive stimuli produce similar nonphotic phase shifts. Behav. Neurosci. 118, 131-137 (2004).
  23. Antle, M. C., Mistlberger, R. E. Circadian clock resetting by sleep deprivation without exercise in the Syrian hamster. J. Neurosci. 20, 9326-9332 (2000).
  24. Banjanin, S., Mrosovsky, N. Preferences of mice, Mus musculus, for different types of running wheel. Lab Anim. 34, 313-318 (2000).
  25. Verwey, M., Lam, G. Y., Amir, S. Circadian rhythms of PERIOD1 expression in the dorsomedial hypothalamic nucleus in the absence of entrained food-anticipatory activity rhythms in rats. Eur. J. Neurosci. 29, 2217-2222 (2009).
  26. Gooley, J. J., Schomer, A., Saper, C. B. The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nat. Neurosci. 9, 398-407 (2006).

Play Video

Cite This Article
Verwey, M., Robinson, B., Amir, S. Recording and Analysis of Circadian Rhythms in Running-wheel Activity in Rodents. J. Vis. Exp. (71), e50186, doi:10.3791/50186 (2013).

View Video