Summary

Aplicação local de Drogas para estudar a função do receptor nicotínico de acetilcolina no cérebro do rato Fatias

Published: October 29, 2012
doi:

Summary

Neste trabalho, nós descrevemos um método útil para o estudo ligante fechado função de canal iônico em neurônios de fatias de cérebro de forma aguda isolados. Este método envolve a utilização de uma micropipeta cheia de medicamento para aplicação local de medicamentos para os neurónios gravados utilizando técnicas padrão de fixação de patch.

Abstract

O uso do tabaco leva a inúmeros problemas de saúde, incluindo câncer, doenças cardíacas, enfisema e infarto. Vício de fumar cigarro é uma doença prevalente neuropsiquiátrica que decorre das ações biofísicas e celulares da nicotina sobre os receptores nicotínicos de acetilcolina (nAChRs) em todo o sistema nervoso central. Compreender os subtipos nAChR vários que existem em áreas do cérebro importantes para a dependência da nicotina é uma das prioridades.

Experimentos que empregam técnicas de eletrofisiologia, como célula inteira braçadeira patch ou dois eletrodos gravações braçadeira de tensão são úteis para a caracterização farmacológica de nAChRs de interesse. Células que expressam nAChRs, tais como as células do tecido de mamífero de cultura ou oócitos de Xenopus laevis, são fisicamente isoladas e são, portanto, facilmente estudado usando as ferramentas da farmacologia moderna. Muito progresso foi feito utilizando essas técnicas, particularmente quando o receptor alvo, já era conhecido umª expressão ectópica foi facilmente alcançado. Muitas vezes, no entanto, é necessário estudar nAChRs no seu ambiente nativo: em neurónios dentro fatias de cérebro de forma aguda colhidas a partir de ratos de laboratório ou ratos. Por exemplo, os ratos que expressa "hipersensíveis" subunidades nAChR tais como α4 ratinhos e ratos L9'A um α6 L9 é 2, permitir uma identificação inequívoca dos neurónios com base na sua expressão funcional de uma subunidade de nAChR específico. Apesar de célula inteira gravações remendo da braçadeira de neurônios em fatias de cérebro é feito rotineiramente pelo eletrofisiologista hábil, é um desafio para aplicar localmente drogas como a nicotina ou acetilcolina para a célula gravado dentro de uma fatia do cérebro. A diluição de drogas para os superfusate (aplicação do banho) não é rapidamente reversível, e tubo em U de sistemas não são facilmente adaptados para funcionar com fatias de cérebro.

Neste artigo, descrevemos um método para rapidamente aplicar nAChR drogas ativadoras de neurônios registrados em adultos mOuse fatias de cérebro. Padrão de célula inteira gravações são feitas a partir de neurónios em fatias, e uma segunda micropipeta cheia com uma droga de interesse é manipulado para a posição perto da célula registada. Uma injecção de ar comprimido ou de azoto inerte para a pipeta cheia de medicamento provoca uma pequena quantidade de solução de fármaco a ser ejectada a partir da pipeta da célula registada. Usando este método, nAChR mediadas correntes podem ser resolvidos com a precisão de milissegundos. Tempos de aplicação de drogas pode ser facilmente variada, e a pipeta cheia de medicamento pode ser recolhido e substituído por uma nova pipeta, permitindo curvas concentração-resposta para ser criado por um único neurónio. Embora tenha sido descrita no contexto de nAChR neurobiologia, esta técnica deverá ser útil para o estudo de muitos tipos de canais iónicos dependentes do ligando ou de receptores nos neurónios de fatias de cérebro.

Protocol

1. Preparação de Soluções de Preparação Cérebro Slice e Eletrofisiologia As soluções para a preparação de fatias de cérebro foram previamente descritos 3, 4. Preparar N-metil-D-glucamina (NMDG) baseada em corte e solução de recuperação com a seguinte composição (em mM): 93 N-metil D-glucamina, 2,5 KCl, 1,2 NaH 2 PO 4, 30 de NaHCO3, 20 mM de HEPES, 25 glucose, 5 de Na + ascorbato, 2-tioureia, 3 piruvato de Na +, 10 MgSO 4<…

Representative Results

Em nossos experimentos, nós rotineiramente gravar a partir de dopamina (DA) de produção de neurônios da área tegmental ventral (VTA) e substantia nigra pars compacta (SNc). Em tensão-grampo modo, a aplicação de pressão ou de acetilcolina nicotina para essas células normalmente resultam em uma rápida corrente de catiões, para o interior, que atinge o pico dentro de 100-200 mseg (Figura 1A-B). Decaimento da corrente é em grande medida ditada por difusão da droga a partir do local de acção …

Discussion

O método apresentado neste artigo é de grande utilidade para o estudo de ligante fechado função de canal iônico em preparações fatia do cérebro. No entanto, há uma série de factores que irão afectar significativamente a qualidade e reprodutibilidade dos dados experimentais, que resultam da utilização deste método. Por exemplo, as correntes evocadas são muito sensíveis ao diâmetro da ponta da pipeta e recheada de drogas. Pequenas dicas irá causar dificuldade com esvaziando a solução de drogas, e dicas…

Acknowledgements

Este trabalho foi financiado pelo National Institutes of Health (NIH) concessão DA030396. Graças aos membros do laboratório Drenan para discussão útil e crítica do manuscrito. Agradecimentos especiais a Mi Ran Kim para assistência técnica e Thomas Jonathan Ting para aconselhamento sobre fatias de cérebro de rato adulto.

Materials

Name of the reagent Company Catalogue number
N-Methyl D-glucamine Sigma M2004
KCl Sigma P3911
NaH2PO4 Sigma S9638
NaHCO3 Sigma S6014
HEPES Sigma H3375
glucose Sigma G5767
Na+ ascorbate Sigma A4034
thiourea Sigma T8656
Na+ pyruvate Sigma P2256
MgSO4•7H2O Sigma 230391
CaCl2•2H20 Sigma 223506
NaCl Sigma S9625
Na+ pentobarbital Vortech Pharmaceuticals 76351315
potassium gluconate Sigma G4500
EGTA Sigma E3889
Mg-ATP Sigma A9187
GTP Sigma G8877
DSK-Zero 1 Vibrating slicer Ted Pella, Inc.
P-97 Flaming/Brown micropipette puller Sutter
RC-27 Recording chamber Warner
TC-344B Perfusion heater controller Warner 640101
SH-27B Solution heater Warner 640102
Nikon FN-1 Nikon
C-7500 CCD Video camera Hamamatsu
Picospritzer III General Valve Co.
MP-285 Micromanipulator Sutter
PA-100 Piezoelectric translator piezosystem jena, Inc.
12V40 piezo amplifier piezosystem jena, Inc.
Axopatch 200B Molecular Devices Corp.
Digidata 1440A Molecular Devices Corp.

References

  1. Tapper, A. R. Nicotine activation of ?4* receptors: sufficient for reward, tolerance, and sensitization. Science. 306, 1029-1032 (2004).
  2. Drenan, R. M. In vivo activation of midbrain dopamine neurons via sensitized, high-affinity ?6* nicotinic acetylcholine receptors. Neuron. 60, 123-136 (2008).
  3. Zhao, S. Cell type-specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat. Methods. 8, 745-7452 (2011).
  4. Peca, J. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature. 472, 437-442 (2011).
  5. Zhou, F. M., Wilson, C. J., Dani, J. A. Cholinergic interneuron characteristics and nicotinic properties in the striatum. J. Neurobiol. 53, 590-605 (2002).
  6. Pidoplichko, V. I. Nicotine activates and desensitizes midbrain dopamine neurons. Nature. 390, 401-404 (1997).
  7. Nashmi, R. Chronic nicotine cell specifically upregulates functional ?4* nicotinic receptors: basis for both tolerance in midbrain and enhanced long-term potentiation in perforant path. J. Neurosci. 27, 8202-8218 (2007).
  8. Xiao, C. Chronic nicotine selectively enhances ?4?2* nicotinic acetylcholine receptors in the nigrostriatal dopamine pathway. J. Neurosci. 29, 12428-12439 (2009).
  9. Cohen, B. N. Nicotinic cholinergic mechanisms causing elevated dopamine release and abnormal locomotor behavior. Neuroscience. 200, 31-41 (2012).
  10. Drenan, R. M. Cholinergic modulation of locomotion and striatal dopamine release is mediated by α6β4* nicotinic acetylcholine receptors. J. Neurosci. 30, 9877-9889 (2010).
  11. Grady, S. R. Structural differences determine the relative selectivity of nicotinic compounds for native α4β2*-, α6β2*-, α3β4*- and α7-nicotine acetylcholine receptors. Neuropharmacology. 58, 1054-1066 (2010).
  12. Drenan, R. M. Subcellular trafficking, pentameric assembly, and subunit stoichiometry of neuronal nicotinic acetylcholine receptors containing fluorescently labeled α6 and β3 subunits. Mol. Pharmacol. 73, 27-41 (2008).
  13. Keath, J. R. Differential modulation by nicotine of substantia nigra versus ventral tegmental area dopamine neurons. J. Neurophysiol. 98, 3388-3396 (2007).
  14. Mansvelder, H. D. Bupropion inhibits the cellular effects of nicotine in the ventral tegmental area. Biochem. Pharmacol. 74, 1283-1291 (2007).
  15. Lee, S. The largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors. J. Neurosci. 30, 16796-16808 (2010).
  16. Margolis, E. B. Reliability in the identification of midbrain dopamine neurons. PLoS One. 5, e15222 (2010).
  17. Margolis, E. B. The ventral tegmental area revisited: is there an electrophysiological marker for dopaminergic neurons. J. Physiol. 577 (Pt 3), 907-924 (2006).
  18. Couey, J. J. Distributed network actions by nicotine increase the threshold for spike-timing-dependent plasticity in prefrontal cortex. Neuron. 54, 73-87 (2007).
  19. Yang, K. Distinctive nicotinic acetylcholine receptor functional phenotypes of rat ventral tegmental area dopaminergic neurons. J. Physiol. 587, 345-361 (2009).
  20. Endo, T. Nicotinic acetylcholine receptor subtypes involved in facilitation of GABAergic inhibition in mouse superficial superior colliculus. J. Neurophysiol. 94, 3893-3902 (2005).
  21. Bouzat, C. New insights into the structural bases of activation of Cys-loop receptors. J. Physiol. Paris. , (2011).
check_url/50034?article_type=t

Play Video

Cite This Article
Engle, S. E., Broderick, H. J., Drenan, R. M. Local Application of Drugs to Study Nicotinic Acetylcholine Receptor Function in Mouse Brain Slices. J. Vis. Exp. (68), e50034, doi:10.3791/50034 (2012).

View Video