Summary

Böcek antennal Lob Gaz Kromatografisi-Multi-ünite Recordings (GCMR) kullanarak Olfaktör Uçuculuk tanımlanması

Published: February 24, 2013
doi:

Summary

Olfaktör ipuçları böcekler birçok farklı davranışlar arabuluculuk, bileşikler ve uçucu yüzlerce onlarca oluşan genellikle kompleks karışımlarıdır. Böcek anten lob çok kanallı bir kayıt ile gaz kromatografisi kullanarak, biyolojik olarak aktif bileşiklerin belirlenmesi için bir yöntem açıklanmaktadır.

Abstract

Tüm organizmalar çevreleriyle kendi davranışsal ve fizyolojik yanıtı belirlemek uyarıcılardır dolu bir dünya yaşamaktadır. Koklama yanıt, ve aralarında, karmaşık koku uyaranlara ayrımcılık onların koku sistemleri kullanmak böcekler, özellikle önemlidir. Bu kokular gibi üreme ve yaşam alanı seçimi 1-3 gibi süreçlerin aracılık davranışları ortaya çıkarmak. Ayrıca, tozlanma 4-6, gıda bitkileri 7 otyeme, ve hastalık 8,9 iletim dahil olmak üzere, tarım ve insan sağlığı açısından son derece önemli olan böcekler aracılık davranışları ile kimyasal algılama. Koku sinyalleri ve böcek davranışları rollerinin tanımlanması ekolojik süreçleri ve insan gıda kaynakları ve refahı hem de anlamak için bu nedenle önemlidir.

Bugüne kadar, böcek davranış sürücü Uçucu maddelerin tanımlanması zor ve yorucu sık sık olmuştur. Güncel tekniklergaz kromatografisi-çiftli electroantennogram kayıt (GC-EAG), ve gaz tek sensillum kayıtları (GC-SSR) 10-12 kromatografisi-birleştiğinde. Bu teknikler, biyoaktif bileşiklerin saptanmasında önemli olduğu kanıtlanmıştır. 13,14; Biz anten lobdaki nöronların (böcek birincil koku merkezi AL) gelen çok kanallı elektrofizyolojik kayıtlar ('GCMR' olarak adlandırılır) bağlanmıştır gaz kromatografi kullanan bir yöntem geliştirdik. Bu state-of-the-art tekniği bize koku bilgilerin böcek beyinde nasıl temsil edildiğini soruşturma için izin verir. Olfaktör işleme bu düzeyde kokulara sinir tepkiler AL nöronlarca anten reseptör nöronları yakınsama derecesi duyarlı nedeniyle çünkü Ayrıca, AL kayıtları doğal kokuları verimli ve yüksek hassasiyet ile aktif bileşenlerin tespiti sağlayacaktır. Burada GCMR açıklamak ve onun kullanımıyla ilgili bir örnek vermek.

Birkaç genel adımlar invol vardırBiyolojik olarak aktif böcek ve uçucular tepki tespit fraksiyonel. Uçucu ilk faiz kaynaklardan toplanan (bu örnekte biz cinsinin Mimulus (Phyrmaceae) çiçek kullanın) ve standart GC-MS teknikleri 14-16 kullanılarak gerektiğinde karakterize gerekir. Böcekler bir kayıt elektrot sinir kayıt başlar anten lob ve multi-kanal içine yerleştirilir, bunun ardından, en az diseksiyon kullanılarak çalışma için hazırlanmıştır. Nöral verilerin post-processing ardından özellikle koku böcek sinir sistemi tarafından ciddi nöral yanıtların neden olduğu görülmektedir.

Burada mevcut örnek, tozlaşma çalışmalar için belirli olsa da, GCMR çalışma organizmalar ve uçucu kaynaklardan geniş bir şekilde genişletilebilir. Örneğin, bu yöntem, koku maddesi vektör böcek ve bitki haşere kovucu çekme ya da tanımlanmasında kullanılabilir. Ayrıca, aynı zamanda, GCMR po olarak yararlı böceklere için cezbedici belirlemek için kullanılabilirllinators. Tekniği yanı olmayan böcek konulara genişletilebilir.

Protocol

1. Uçucu Follection Bu örnekte, M. uçucu numuneleri kullanmak lewisii çiçek – California'ya bir dağ kır çiçeği yerli. Uçucu Riffell ve arkadaşlarına göre dinamik emme yöntemler kullanılarak elde edilmektedir. 14. Kısaca, bu yöntem çiçekler teflon torba içine alınır bir kapalı döngü yakalama sistemi kullanır. Inert bir vakum pompası kullanılarak, çiçekler etrafında hava Porapak Q matris ile dolu bir Pasteur pipeti oluşan bir &q…

Representative Results

M. kullanılarak GCMR tahlilinde lewisii çiçek kokusu, biz GC özü 3 ul enjekte. GC ile akıtılarak Uçucu toplam sayısı genellikle 60-70 uçucu olduğunu. M. kokusu lewisii ağırlıklı altı karbonlu, örneğin 2-heksanol gibi uçucu maddeler, ve tepe boşluğunun, <% 1 ihtiva seskuiterpenoidler oluşan koku geri kalanı ile, β-mirsen (asiklik) ve α-pinen de dahil olmak üzere, monoterpenoids oluşur. GCMR anten lob nöronla…

Discussion

Böcek koku-aracılı davranışları üreme, ana-yer seçimi ve uygun gıda kaynaklarının belirlenmesi dahil olmak üzere birçok farklı süreçler, sürücü. Bu süreçlerin çalışma kaynak yanı sıra, davranışları aracılık eden, bu bileşiklerin teşhis etme yeteneği yayılan uçucu maddeler belirlemek için yeteneğini gerektirir. Konularda karmaşık kokular birlikte, tek tek bileşenlerin 6,7,13,19,20 farklı algılanan bir tek koku oluşturmak tek tek bileşiklerin yüz on oluşmaktadır o…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Bu çalışma NSF hibe IOS 1121692 tarafından ve Washington'un Araştırma Vakfı Üniversitesi tarafından desteklenmiştir.

Materials

Name of item Company Catalog Number Comments
Porapak Type Q 80-100 mesh Waters WAT027060
Reynolds Oven Bags Reynolds
GC Agilent 7820A
GC column J&W Scientific, Folsom, CA, USA DB-5 (30 m, 0.25 mm, 0.25 μm)
Analytical helium carrier gas Praxair HE K 1 cc/min
16-channel silicon electrode Neuronexus Technologies a4x4-3mm50-177
Fine wire NiCr, 0.012 mm diameter) Sandvik Kanthal HP Reid PX000004 For making custom tetrodes and stereotrodes
Pre-amplifier Tucker-Davis System PZ-2
Amplifier Tucker-Davis System RZ-2
Data acquisition system – OpenEx suite Tucker-Davis System
Online spike-sorting software – SpikePac Tucker-Davis System
Offline spike-sorting software – Mclust Spike-sorting toolbox David Redish, Department of Neuroscience, University of Minnesota Free download at http://redishlab.neuroscience.umn.edu/MClust/MClust.html MATLAB toolbox

References

  1. Hildebrand, J. G., Shepherd, G. M. Mechanisms of olfactory: converging evidence for common principles across phyla. Annual Review of Neuroscience. 20, 595-631 (1997).
  2. Reisenman, C. E., Riffell, J. A., Bernays, E. A., Hildebrand, J. G. Antagonistic effects of floral scent in an insect-plant interaction. Proceedings of the Royal Society B: Biological Sciences. 277, 2371-2379 (2010).
  3. Reisenman, C. E., Riffell, J. A., Hildebrand, J. G. . International Symposium on Olfaction and Taste. 1170, 462-467 (2009).
  4. Alarcón, R. Congruence between visitation and pollen-transport networks in a California plant-pollinator community. Oikos. 119, 35-44 (2010).
  5. Alarcón, R., Waser, N. M., Ollerton, J. Year-to-year variation in the topology of a plant-pollinator interaction network. Oikos. 117, 1796-1807 (2008).
  6. Riffell, J., et al. Behavioral consequences of innate preferences and olfactory learning in hawkmoth-flower interactions. P. Natl. Acad. Sci. U.S.A. 105, 3404-3409 (2008).
  7. De Moraes, C. M., Lewis, W. J., Pare, P. W., Alborn, H. T., Tumlinson, J. H. Herbivore-infested plants selectively attract parasitoids. Nature. 393, 570 (1998).
  8. Carey, A. F., Wang, G., Su, C. -. Y., Zwiebel, L. J., Carlson, J. R. Odorant reception in the malaria mosquito Anopheles gambiae. Nature. 464, 66-71 (2010).
  9. Turner, S. L., et al. Ultra-prolonged activation of CO2-sensing neurons disorients mosquitoes. Nature. 474, 87-91 (2011).
  10. Pellegrino, M., Nakagawa, T., Vosshall, L. B. Single sensillum recordings in the insects Drosophila melanogaster and Anopheles gambiae. J Vis Exp. (36), e1725 (2010).
  11. Syed, Z., Leal, W. S. Electrophysiological measurements from a moth olfactory system. J. Vis. Exp. (49), e2489 (2011).
  12. Roelofs, W. L., Comeau, A., Hill, A., Milicevic, G. Sex attractant of the codling moth: characterization with electroantennogram technique. Science. 174, 297-299 (1971).
  13. Riffell, J. A., Lei, H., Christensen, T. A., Hildebrand, J. G. Characterization and coding of behaviorally significant odor mixtures. Current Biology. 19, 335-340 .
  14. Riffell, J. A., Lei, H., Hildebrand, J. G. Neural correlates of behavior in the moth Manduca sexta in response to complex odors. Proceedings of the National Academy of Sciences of the U.S.A. 106, 19219-19226 (2009).
  15. Raguso, R. A., Pellmyr, O. Dynamic headspace analysis of floral volatiles: a comparison of methods. Oikos. 81, 238-254 (1998).
  16. Rodriguez-Saona, C. R. Herbivore-induced blueberry volatiles and intra-plant signaling. J Vis Exp. , e3440 (2011).
  17. Nguyen, D. P., et al. Micro-drive array for chronic in vivo recording: tetrode assembly. J Vis Exp. , e1098 (2009).
  18. Schjetnan, A. G. P., Luczak, A. Recording large-scale neuronal ensembles with silicon probes in the anesthetized rat. J Vis Exp. , e3282 (2011).
  19. Deisig, N., Giurfa, M., Lachnit, H., Sandoz, J. -. C. Neural representation of olfactory mixtures in the honeybee antennal lobe. European Journal of Neuroscience. 24, 1161-1174 (2006).
  20. Stökl, J., et al. A deceptive pollination system targeting drosophilids through olfactory mimicry of yeast. Current Biology. 20, 1846-1852 (2010).
  21. Schneider, D. Elektrophysiologische untersuchungen von chemo- und mechanorezeptoren der antenne des seidenspinners Bombyx mori L. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology. 40, 8-41 (1957).
  22. Arn, H., Städler, E., Rauscher, S. The electroantennographic detector: a selective and senstitive tool in the gas chromatographic analysis of insect pheromones. Zeitschrift für Naturforschung. 30c, 722-725 (1975).
  23. Schneider, D., Boeckh, J. Rezeptorpotential und nervenimpulse einzelner olfaktorischer sensillen der insektenantenne. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology. 45, 405-412 (1962).
  24. Blight, M. M., Pickett, J. A., Wadhams, L. J., Woodcock, C. M. Antennal perception of oilseed rape Brassica napus (Brassicaceae) volatiles by the cabbage seed weevil Ceutorhynchus assimilis (Coleoptera, Curculionidae). Journal of Chemical Ecology. 21, 1649-1664 (1995).
  25. Lin, D. Y., Shea, S. D., Katz, L. C. Representation of natural stimuli in the rodent main olfactory bulb. Neuron. 50, 937-949 (2006).
  26. Lei, H., Reisenman, C. E., Wilson, C. H., Gabbur, P., Hildebrand, J. G. Spiking patterns and their functional implications in the antennal lobe of the tobacco hornworm Manduca sexta. PLoS ONE. 6, e23382 (2011).
  27. Syed, Z., Leal, W. S. Acute olfactory response of Culex mosquitoes to a human- and bird-derived attractant. Proceedings of the National Academy of Sciences. 106, 18803-18808 (2009).

Play Video

Cite This Article
Byers, K. J. R. P., Sanders, E., Riffell, J. A. Identification of Olfactory Volatiles using Gas Chromatography-Multi-unit Recordings (GCMR) in the Insect Antennal Lobe. J. Vis. Exp. (72), e4381, doi:10.3791/4381 (2013).

View Video