Summary

对检测方法果蝇行为

Published: March 07, 2012
doi:

Summary

果蝇是一种基因和行为听话的模型系统已用于了解一个多世纪1的基础上的许多重要的生物过程的分子和细胞, 果蝇已经得到了很好的利用获得到飞行为的遗传基础的见解。

Abstract

果蝇 ,果蝇,已用于研究的范围广泛的人类疾病,如癌症,心血管疾病及各种神经系统疾病的分子机制。我们已经优化了简单和强大的行为分析,确定幼虫的运动,成年的爬坡能力(环法),对果蝇的求偶行为这些行为的分析是研究遗传和环境因素对飞行为的作用,广泛适用。幼虫爬行能力,能可靠地用于确定在果蝇幼虫爬行能力的早期阶段的变化,并检查他们的运动,药物或人类疾病基因的影响(转基因果蝇)。幼虫爬行检测变得更适用,如果一个基因的表达或取消导致蛹或成人阶段的杀伤力,因为这些苍蝇不活到成年,他们可以评估。这基本也可用于ssay配合明亮的光线或应力研究果蝇幼虫额外的行为反应。求偶行为已被广泛用于研究遗传基础的性行为,也可用于检查活动和协调,以及学习和记忆。 果蝇求偶行为涉及的各种感官刺激,包括视觉,听觉和化学感应信号交换之间的男性和女性,导致一系列复杂的特点以及电机最终成功交配行为。传统的成人攀岩检测(负geotaxis),单调乏味,劳动密集,耗时2-4不同试验之间的显着变化,。快速迭代5负geotaxis(环)法有许多优势,更广泛采用的协议,提供了一个重复性好,灵敏度高,高通量的方法来量化成人运动和消极geotaxis behaviors。在环法,几个基因型或药物治疗,可以同时使用大量的动物测试,高通量的方法筛选试验更适合。

Protocol

A.幼虫爬行法 1。幼虫收集成立8盎司一瓶苍蝇(10-15男性10-15女性)。 让苍蝇奠定24小时的卵子,然后明确瓶苍蝇。 (转移到​​一个新瓶的成年人,并在必要时重复)。 孵育瓶为3-4天,或直至三龄幼虫均可见。 添加50 – 100毫升20%的蔗糖与幼虫的瓶子,让坐了20分钟。幼虫会浮到顶端。 收集的幼虫用25毫升血清吸管尖端切断,成网状篮子的?…

Discussion

果蝇的行为是严格受遗传和环境因素。我们和其他人,以前使用这里描述的实验,收集数据,检查飞的行为,并在果蝇 5-19仿照人类神经退行性疾病相关的基因。 第三龄幼虫爬行分析,慎重选择是关键的一步。如果用药物治疗,它会采取10-15分钟(或更取决于药物的类型和性质),以达到最大的效果,如果有良好的溶解性。因此,我们经常喂药物飞行15分钟,然后等?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们要感谢Astha Maltare产生的幼虫爬行数据。我们要感谢博士尼古拉斯·兰森小的手稿给他的意见。为ALS在约翰霍普金斯大学的罗伯特·帕卡德中心(百联)和肌萎缩性侧索硬化症协会(百联);和支持这项工作是从国家精神卫生研究院(CDN),R01MH083689。

Materials

Name of the reagent Company Catalogue number
Sucrose Fisher Scientific S5-500
Agarose Invitrogen 16500-500
6 oz Drosophila bottle Genesee Scientific 32-130
Paint Brush (#1) Ted Pella,Inc. 11859
Fly food components    
Cornmeal Fisher Scientific NC9109741
Agar Genesee Scientific 66-104
Molasses Fisher Scientific NC9349176
Propionic acid Acros 14930-0010
Tegosept Apex 20-258
Ethanol Fisher Scientific BP2818-4
Yeast Genesee Scientific 62-107

References

  1. Pandey, U. B., Nichols, C. D. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol. Rev. 63 (2), 411-436 (2011).
  2. Feany, M. B., Bender, W. W. A Drosophila model of Parkinson’s disease. Nature Mar. 23 (6776), 394-398 (2000).
  3. Auluck, P. K., Bonini, N. M. Pharmacological prevention of Parkinson disease in Drosophila. Nat. Med. 8 (11), 1185-1186 (2000).
  4. Whitworth, A. J., Theodore, D. A., Greene, J. C., Benes, H., Wes, P. D., Pallanck, L. J. Increased glutathione Stransferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson’s disease. Proc. Natl. Acad. Sci. U.S.A. 102 (22), 8024-8029 (2005).
  5. Gargano, J. W., Martin, I., Bhandari, P., Grotewiel, M. S. Rapid iterative negative geotaxis (RING): a new method for assessing age-related locomotor decline in Drosophila. Exp. Gerontol. 40 (5), 386-395 (2005).
  6. Lanson, N. A., Maltare, A., King, H., Smith, R., Kim, J. H., Taylor, J. P., Lloyd, T. E., Pandey, U. B. A Drosophila model of FUS-related neurodegeneration reveals genetic interaction between FUS and TDP-43. Hum. Mol. Genet. 20 (13), 2510-2523 (2011).
  7. Batlevi, Y., Martin, D. N., Pandey, U. B., Simon, C. R., Powers, C. M., Taylor, J. P., Baehrecke, E. H. Dynein light chain 1 is required for autophagy, protein clearance, and cell death in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 107 (2), 742-747 (2010).
  8. Sang, T. K., Chang, H. Y., Lawless, G. M., Ratnaparkhi, A., Mee, L., Ackerson, L. C., Maidment, N. T., Krantz, D. E., Jackson, G. R. A Drosophila model of mutant human parkin-induced toxicity demonstrates selective loss of dopaminergic neurons and dependence on cellular dopamine. J. Neurosci. 27 (5), 981-992 (2007).
  9. Stacey, S. M., Muraro, N. I., Peco, E., Labbé, A., Thomas, G. B., Baines, R. A., van Meyel, D. J. Drosophila glial glutamate transporter Eaat1 is regulated by fringe-mediated notch signaling and is essential for larval locomotion. J. Neurosci. 30 (43), 14446-14457 (2010).
  10. Repnikova, E., Koles, K., Nakamura, M., Pitts, J., Li, H., Ambavane, A., Zoran, M. J., Panin, V. M. Sialyltransferase regulates nervous system function in Drosophila. J. Neurosci. 30 (18), 6466-6476 (2010).
  11. Repnikova, E., Koles, K., Nakamura, M., Pitts, J., Li, H., Ambavane, A., Zoran, M. J., Panin, V. M. Sialyltransferase regulates nervous system function in Drosophila. J. Neurosci. 30 (18), 6466-6476 (2010).
  12. Nedelsky, N. B., Pennuto, M., Smith, R. B., Palazzolo, I., Moore, J., Nie, Z., Neale, G., Taylor, J. P. Native functions of the androgen receptor are essential to pathogenesis in a Drosophila model of spinobulbar muscular atrophy. Neuron. 67 (6), 936-952 (2010).
  13. Lorenzo, D. N., Li, M. G., Mische, S. E., Armbrust, K. R., Ranum, L. P., Hays, T. S. Spectrin mutations that cause spinocerebellar ataxia type 5 impair axonal transport and induce neurodegeneration in Drosophila. J. Cell Biol. 189 (1), 143-158 (2010).
  14. Wang, J. W., Brent, J. R., Tomlinson, A., Shneider, N. A., McCabe, B. D. The ALS-associated proteins FUS and TDP-43 function together to affect Drosophila locomotion and life span. J. Clin. Invest. , (2011).
  15. Choi, J. K., Jeon, Y. C., Lee, D. W., Oh, J. M., Lee, H. P., Jeong, B. H., Carp, R. I., Koh, Y. H., Kim, Y. S. A Drosophila model of GSS syndrome suggests defects in active zones are responsible for pathogenesis of GSS syndrome. Hum. Mol. Genet. 19 (22), 4474-4489 (2010).
  16. Ruan, H., Wu, C. F. Social interaction-mediated lifespan extension of Drosophila Cu/Zn superoxide dismutase mutants. Proc. Natl. Acad. Sci. U.S.A. 105 (21), (2008).
  17. Slawson, J. B., Kim, E. Z., Griffith, L. C. High-resolution video tracking of locomotion in adult Drosophila melanogaster. J. Vis. Exp. (24), (2009).
  18. Becnel, J., Johnson, O., Luo, J., Nässel, D. R., Nichols, C. D. The serotonin 5-HT7 Dro receptor is expressed in the brain of Drosophila, and is essential for normal courtship and mating. PLoS One. 6 (6), e20800 (2011).
  19. Johnson, O., Becnel, J., Nichols, C. D. Serotonin 5-HT(2) and 5-HT(1A)-like receptors differentially modulate aggressive behaviors in Drosophila melanoga- ster. Neuroscience. 158 (2), 1292-1300 (2009).
  20. Bastock, M., Manning, A. The Courtship of Drosophila Melanogaster. Behaviour. , 85-111 (1955).
  21. Greenspan, R. J., Ferveur, J. F. Courtship in Drosophila. Annu. Rev. Genet. 34, 205-232 (2000).
  22. Villella, A., Hall, J. C. Neurogenetics of courtship and mating in Drosophila. Adv. Genet. 62, 67-184 (2008).

Play Video

Cite This Article
Nichols, C. D., Becnel, J., Pandey, U. B. Methods to Assay Drosophila Behavior. J. Vis. Exp. (61), e3795, doi:10.3791/3795 (2012).

View Video