Summary

Подготовка Synaptoneurosomes от мыши Cortex использовании разрывных Перколла-Сахароза градиента плотности

Published: September 17, 2011
doi:

Summary

Метод подготовить трансляционно активных, неповрежденные synaptoneurosomes (SNS) из коры головного мозга мыши описано. Метод использует разрывные Перколла-сахарозы градиента плотности позволяет быстрого приготовления активных СН.

Abstract

Synaptoneurosomes (SNS) получаются после гомогенизации и фракционирования коры мозга мыши. Они закрыты пузырьки или изолированных клемм, что оторваться от аксонов терминалов при корковой ткани гомогенизируют. СН сохранить пре-и постсинаптического характеристиками, что делает их полезными при изучении синаптической передачи. Они сохраняют молекулярные машины, используемые в нейронных сигналов и способны поглощать, хранение и высвобождение нейротрансмиттеров.

Производство и изоляции активных СН может быть проблематичным использование СМИ как Ficoll, которые могут быть цитотоксические и требуют более широкого центрифугирования из-за высокой плотности и фильтрации и центрифугирования методы, которые могут привести к низкой активности из-за механических повреждений СН. Тем не менее, использование разрывных Перколла-сахарозы градиенты плотности, чтобы изолировать СН обеспечивает быстрый метод получения хороших урожаев трансляционно-активных СН. Перколла-градиенте сахарозы метод быстр и нежные, как она использует изотонический условиях, имеет все меньше и короче спины центрифугирования и избегает шагов, которые центрифугирования гранулы СН и вызвать механические повреждения.

Protocol

1. Подготовка 1-4 Подготовка 500 мл градиент среды (GM) буфера путем смешивания 50 мл 2,5 М раствора сахарозы, 2,5 мл 1М Трис-HCl, pH7.5 акций, и 0,1 мл 0,5 М ЭДТА, рН 8,0 акции с милли- Q водой до полного объема. Фильтры стерилизовать решение, аликвоты и хранить замороженные. Подготовка 1000x за?…

Discussion

Разрывных Перколла-градиенте сахарозы подготовки описаны в настоящем документе, быстрый, надежный способ, чтобы изолировать активных СН, который может быть использован в разнообразных экспериментах синаптической передачи. Этот градиент метод, который основан на методике, разработан…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Мы хотели бы поблагодарить BK августа из Университета Висконсин-Мэдисон Фонда электронного микроскопа для электронной микроскопии. Эта работа была поддержана грантами NIH R01-DA026067 и P30-HD03352 (для JSM).

Materials

Name of the reagent Company Catalogue number Comments (optional)
Micro BCA Protein Assay Kit Pierce 23235  
CaCl2 Fisher C79-500  
CO2 gas Airgas (UW-MDS) CD 50  
EDTA RPI E57020  
EtOH Fisher A407SK-4  
HCl Fisher A142-212  
Percoll GE Healthcare 17-0891-01  
KH2PO4 Fisher P285-500  
PierceSDS-PAGE Sample Prep Kit Pierce 89888  
NaCl RPI S23020  
NaHCO3 Fisher BP328-500  
Na2PHO4 Fisher S381-500  
Sucrose RPI S24060  
Tris Base RPI T60040  
Tetrodotoxin Sigma T5651  
Express Pro Label Mix S35 Easy Tag Perkin Elmer NEG772  
       
Equipment Company Catalogue number Comments (optional)
Dissection tools      
Dounce homogenizer, 7 mL (comes with two glass pestles labled ” A” and “B”) Wheaton    
P1000 Gilson Pipetman Gilson F123602  
Allegra 6KR Centrifuge Beckman Coulter 366830  
GH 3.8 Rotor, Swinging bucket rotor Beckman Coulter 360581  
Beckman J2-21 Centrifuge Beckman    
Beckman tubes with caps Beckman 355672  
White walled adapters Beckman 342327  
Blue walled adapters Beckman    
JA-17 Rotor, Fixed-angle rotor Beckman 369691  

Table of antibodies used for western blots:

Name of Antibody Company Catalogue number Host Species Dilution Factor
β-Actin Sigma A5441 mouse 1:2000
GFAP Santa Cruz sc-65343 mouse 1:200
GP73 Santa Cruz Sc-134509 rabbit 1:200
HSC70 Santa Cruz sc-7298 mouse 1:200
Laminβ Santa Cruz Sc-6261 goat 1:200
Prohibitin Santa Cruz sc-28259 rabbit 1:200
PSD95 Millipore MAB1596 mouse 5 μg/μL
SNAP25 AbCam ab5666-100 rabbit 1:2000
Synaptophysin Millipore MAB368 mouse 1:500
β-3-Tubulin Santa Cruz sc-80016 mouse 1:200

References

  1. Westmark, C. J., Malter, J. S. FMRP mediates mGluR5-dependent translation of amyloid precursor protein. PLoS Biol. 5, e52-e52 (2007).
  2. Westmark, P. R., Westmark, C. J., Wang, S., Levenson, J., O’Riordan, K. J., Burger, C., Malter, J. S. Pin1 and PKMzeta sequentially control dendritic protein synthesis. Sci Signal. 3, ra18-ra18 (2010).
  3. Dunkley, P. R., Heath, J. W., Harrison, S. M., Jarvie, P. E., Glenfield, P. J., Rostas, J. A. A rapid Percoll gradient procedure for isolation of synaptosomes directly from an S1 fraction: Homogeneity and morphology of subcellular fractions. Brain Res. 441, 59-71 (1988).
  4. Dunkley, P. R., Jarvie, P. E., Robinson, P. J. A rapid Percoll gradient procedure for preparation of synaptosomes. Nat. Protoc. 3, 1718-1728 (2008).
  5. Hollingsworth, E. B., McNeal, E. T., Burton, J. L., Williams, R. J., Daly, J. W., Creveling, C. R. Biochemical characterization of a filtered synaptoneurosome preparation from guinea pig cerebral cortex: cyclic adenosine 3′:5′-monophosphate-generating systems, receptors, and enzymes. J. Neurosci. 5, 2240-2253 (1985).
  6. Yi, H., Leunissen, J., Shi, G., Gutekunst, C., Hersch, S. A novel procedure for pre-embedding double immunogold-silver labeling at the ultrastructural level. J. Histochem. Cytochem. 49, 279-284 (2001).
  7. Akins, M. R., Berk-Rauch, H. E., Fallon, J. R. Presynaptic translation: stepping out of the postsynaptic shadow. Front. Neural Circuits. 3, (2009).
  8. Jin, I., Kandel, E. R., Hawkins, R. D. Whereas short-term facilitation is presynaptic, intermediate-term facilitation involves both presynaptic and postsynaptic protein kinases and protein synthesis. Learn. Mem. 18, 96-102 (2011).
  9. Lyles, V., Zhao, Y., Martin, K. C. Synapse formation and mRNA localization in cultured Aplysia neurons. Neuron. 49, 349-356 (2006).
  10. Wagatsuma, A., Azami, S., Sakura, M., Hatakeyama, D., Aonuma, H., Ito, E. De Novo synthesis of CREB in a presynaptic neuron is required for synaptic enhancement involved in memory consolidation. J. Neurosci. Res. 84, 954-9560 (2006).
  11. Sutton, M. A., Schuman, E. M. Local translational control in dendrites and its role in long-term synaptic plasticity. J. Neurobiol. 64, 116-131 (2005).
  12. Li, K. -. W., Hornshaw, M. P., Van der Schors, R. C., Watson, R., Tate, S., Casetta, B., Jimenez, C. R. Proteomics analysis of rat brain postsynaptic density: implications of the diverse protein functional groups for the integration of synaptic physiology. J. Biol. Chem. 279, 987-1002 (2004).
  13. Peng, J., Kim, M. J., Cheng, D., Duong, D. M., Gygi, S. P., Sheng, M. Semi-quantitative proteomic analysis of rat forebrain postsynaptic density fractions by mass spectrometry. J. Biol. Chem. 279, 21003-21011 (2004).
  14. Kim, S. H., Fraser, P. E., Westaway, D., St. George-Hyslop, P. H. Group II metabotropic glutamate receptor stimulation triggers production and release of Alzheimer’s amyloid β42 from isolated intact nerve terminals. J. Neurosci. 30, 3870-3875 (2010).
  15. Weiler, I. J., Greenough, W. T. Potassium ion stimulation triggers protein translation in synaptoneurosomal poiyribosomes. Mol. Cell. Neurosci. 2, 305-314 (1993).
  16. Billard, J. M. Ageing, hippocampal synaptic activity and magnesium. Magnes Res. 19, 199-215 (2006).
  17. Murphy, G. G., Fedorov, N. B., Giese, K. P., Ohno, M., Friedman, E., Chen, R., Silva, A. J. Increased neuronal excitability, synaptic plasticity, and learning in aged Kvbeta1.1 knockout mice. Curr. Biol. 14, 1907-1915 (2004).
  18. Norris, C. M., Halpain, S., Foster, T. C. Reversal of Age-Related Alterations in Synaptic Plasticity by Blockade of L-Type Ca21 Channels. J. Neurosci. 18, 3171-3179 (1998).
  19. Sallert, M., Malkki, H., Segersträlea, M., Tairaa, T., Lauri, S. E. Effects of the kainate receptor agonist ATPA on glutamatergic synaptic transmission and plasticity during early postnatal development. Neuropharm. 52, 1354-1365 (2007).
  20. Quinlan, E. M., Philpot, B. D., Huganir, R. L., Bear, M. F. Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nat. Neurosci. 2, 357-35 (1999).
  21. Scheetz, A. J., Nairn, A. C., Constantine-Patton, M. NMDA receptor-mediated control of proteins synthesis at developing synapses. Nat. Neurosci. 3, 211-216 (2000).
  22. Villasana, L. E., Klann, E., Tejada-Simon, M. V. Rapid isolation of synaptoneurosomes and postsynaptic densities from adult mouse hippocampus. J. Neurosci. Methods. 158, 30-36 (2006).
  23. Weiler, I. J., Greenough, W. T. Metabotropic glutamate receptors trigger postsynaptic protein synthesis. Proc. Natl. Acad. Sci. U.S.A. 90, 7168-7171 (1993).
  24. Gray, E. G., Whittaker, V. P. The isolation of nerve endings from brain: An electron microscopic study of cell fragments derived by homogenization and centrifugation. J. Anat. 96, 79-88 (1962).
  25. Gylys, K. H., Fein, J. A., Yang, F., Cole, G. M. Enrichment of Presynaptic and Postsynaptic Markers by Size-Based Gating Analysis of Synaptosome Preparations From Rat and Human Cortex. Cytometry A. 60, 90-96 (2004).
  26. Hajós, F. An improved method for the preparation of synaptosomal fractions in high purity. Brain Res. 93, 485-489 (1975).
  27. Bai, F., Witzmann, F. A. Synaptosome Proteomics. Subcell. Biochem. 43, 77-98 (2007).
  28. Rao, A., Steward, O. Evidence that protein constituents of postsynaptic membrane specializations are locally synthesized: analysis of proteins synthesized within synaptosomes. J Neurosci. 11, 2881-2895 (1991).
  29. Pertoft, H., Laurent, T. C., Catsimpoolas, N. Isopycnic separation of cells and cell organelles by centrifugation and modified colloidal silica gradients. Methods of Cell Separation. , 25-65 (1977).
  30. Ramarao, C. S., Acharya, S. R., Krishnan, K. S., Kenkare, U. W. High affinity uptake of L-glutamate and γ-aminobutyric acid in Drosophila melanogaster. J. Biosci. 11, 119-135 (1987).
  31. Munteanu, L. S., Dinu, A. Fractionation of granulocytes from whole human blood by centrifugation. Practical hints. Romanian J. Biophys. 14, 53-58 (2004).
  32. Vlasselaer, P., Van Palathumpat, V. Cell separation composition, kit and method. US patent. , (1997).

Play Video

Cite This Article
Westmark, P. R., Westmark, C. J., Jeevananthan, A., Malter, J. S. Preparation of Synaptoneurosomes from Mouse Cortex using a Discontinuous Percoll-Sucrose Density Gradient. J. Vis. Exp. (55), e3196, doi:10.3791/3196 (2011).

View Video