This article presents a robust protocol for isolation and culture of neural crest stem cells from human hair follicles.
Hair follicles undergo lifelong growth and hair cycle is a well-controlled process involving stem cell proliferation and quiescence. Hair bulge is a well-characterized niche for adult stem cells1. This segment of the outer root sheath contains a number of different types of stem cells, including epithelial stem cells2, melanocyte stem cells3 and neural crest like stem cells4-7. Hair follicles represent an accessible and rich source for different types of human stem cells. We and others have isolated neural crest stem cells (NCSCs) from human fetal and adult hair follicles4,5. These human stem cells are label-retaining cells and are capable of self-renewal through asymmetric cell division in vitro. They express immature neural crest cell markers but not differentiation markers. Our expression profiling study showed that they share a similar gene expression pattern with murine skin immature neural crest cells. They exhibit clonal multipotency that can give rise to myogenic, melanocytic, and neuronal cell lineages after in vitro clonal single cell culture. Differentiated cells not only acquire lineage-specific markers but also demonstrate appropriate functions in ex vivo conditions. In addition, these NCSCs show differentiation potential toward mesenchymal lineages. Differentiated neuronal cells can persist in mouse brain and retain neuronal differentiation markers. It has been shown that hair follicle derived NCSCs can help nerve regrowth, and they improve motor function in mice transplanted with these stem cells following transecting spinal cord injury8. Furthermore, peripheral nerves have been repaired with stem cell grafts9, and implantation of skin-derived precursor cells adjacent to crushed sciatic nerves has resulted in remyelination10. Therefore, the hair follicle/skin derived NCSCs have already shown promising results for regenerative therapy in preclinical models.
Somatic cell reprogramming to induced pluripotent stem (iPS) cells has shown enormous potential for regenerative medicine. However, there are still many issues with iPS cells, particularly the long term effect of oncogene/virus integration and potential tumorigenicity of pluripotent stem cells have not been adequately addressed. There are still many hurdles to be overcome before iPS cells can be used for regenerative medicine. Whereas the adult stem cells are known to be safe and they have been used clinically for many years, such as bone marrow transplant. Many patients have already benefited from the treatment. Autologous adult stem cells are still preferred cells for transplantation. Therefore, the readily accessible and expandable adult stem cells in human skin/hair follicles are a valuable source for regenerative medicine.
1. Preparation of Tissue Culture Plates
2. Extract Hair Follicle Cells from Human Scalp
3. Isolation of Hair Follicle NCSCs Using Flow Cytometric Cell Sorting
4. Culture of Primary NCSCs
5. Expansion of NCSCs
6. Representative Results
NCSC culture medium is sufficient to maintain hNCSCs in an undifferentiated state without the need for feeder cells. Keratinocytes will not proliferate and gradually died in the medium. Certain small round cells will proliferate and form small aggregates in suspension after 3 to 5 days. These floating aggregates slowly increased in size, generated three-dimensional sphere-like structures, which we termed hair spheres (Figure 3A). If cultured in coated plates, the NCSCs will attach to the surface and not form any spheres. The attached NCSCs grow faster than in suspension. The sphere-forming or attached stem cells express NCSCs markers. When entire hair follicles are cultures, spheres are formed at the area corresponding to the bulge region (Figure 3B) .
Figure 1. Plucked anagen (A) and telogen (B) hair follicles.
Figure 2. Representative images of FACS analysis of NCSCs. Left panel: cells are gated using anti-CD271 and anti-alphe 4 integrin antibodies. Right panel: cells are gated using anti-CD271 and anti-HNK1 antibodies.
Figure 3. Morphology of hair spheres. (A) Morphology of floating hair spheres, left panel: low power, right panel: high power. (B) Morphology of hair sphere in situ at the bulge region, left panel: a hair sphere at telogen bulge, right panel: a hair sphere at the bulge region of an anagen hair follicle.
The cell isolation and culture methods described are reproducible and robust. We have generated NCSCs from dozens of individuals across a broad age range. Although it is best to process the tissue right after tissue harvest, we found that scalp tissues can be safely stored in media on ice for overnight transportation with minimal impact on cell viability.
It is important to treat the scalp tissue with antibiotics and use aseptic technique during hair follicle isolation to avoid potential microorganism contamination. Discarded facelift skin or fetal scalp tissue yields hundreds of viable follicles and usually generate sufficient tissue for FACS sorting or further experiments in only a few days. Punch biopsy of scalp tissue usually generates limited number of cells and requires additional culture tissue to produce sufficient cells for further experiments.
Embryonic NCSCs give rise to a multitude of different cell types in the body11, it appears that hair follicle derived NCSCs also have a broad spectrum of differentiation capacity. Hair bulge is the niche for different type of stem cells3,12. Lyle and colleagues have shown isolation of human epithelial stem cells from hair bulge and these cells are multiple potent along the epithelial lineages13. Melanocyte precursors also reside in the hair bulge3. It is therefore possible to simultaneously isolate different populations of stem cells by culturing hair follicle-derived cells in mediums with different type of growth factors. Hair follicle derived stem cells are a promising source for cell regenerative therapies.
The authors have nothing to disclose.
This work is supported by NIH grant R01AR054593 and R01AR054593-S1 to Xu.
Name of the reagent | Company | Catalogue number |
DMEM | Invitrogen | 11965-092 |
DMEM/F12 | Invitrogen | 11330-32 |
Heat-inactivated FBS | Hyclone | SH30071.03 |
B27 supplement | Invitrogen | 17504044 |
N2 supplement | Invitrogen | 17502048 |
bFGF | Invitrogen | PHG0026 |
EGF | R&D system | 236-EG-01M |
IGF-I | R&D system | 291-G1-050 |
0.05% Trypsin/EDTA | Invitrogen | 25300-054 |
Dispase | Invitrogen | 17105041 |
Penicillin-Streptomycin | Invitrogen | 15070063 |
Table 1.