Lateral fluid percussion (LFP), an established model of traumatic brain injury in mice, is demonstrated. LFP fulfills three major criteria for animal models: validity, reliability and clinical relevance. The procedure, consisting of surgical craniotomy, fixation of hub followed by induction of injury, resulting in focal and diffuse injuries, is described.
Traumatic brain injury (TBI) research has attained renewed momentum due to the increasing awareness of head injuries, which result in morbidity and mortality. Based on the nature of primary injury following TBI, complex and heterogeneous secondary consequences result, which are followed by regenerative processes 1,2. Primary injury can be induced by a direct contusion to the brain from skull fracture or from shearing and stretching of tissue causing displacement of brain due to movement 3,4. The resulting hematomas and lacerations cause a vascular response 3,5, and the morphological and functional damage of the white matter leads to diffuse axonal injury 6-8. Additional secondary changes commonly seen in the brain are edema and increased intracranial pressure 9. Following TBI there are microscopic alterations in biochemical and physiological pathways involving the release of excitotoxic neurotransmitters, immune mediators and oxygen radicals 10-12, which ultimately result in long-term neurological disabilities 13,14. Thus choosing appropriate animal models of TBI that present similar cellular and molecular events in human and rodent TBI is critical for studying the mechanisms underlying injury and repair.
Various experimental models of TBI have been developed to reproduce aspects of TBI observed in humans, among them three specific models are widely adapted for rodents: fluid percussion, cortical impact and weight drop/impact acceleration 1. The fluid percussion device produces an injury through a craniectomy by applying a brief fluid pressure pulse on to the intact dura. The pulse is created by a pendulum striking the piston of a reservoir of fluid. The percussion produces brief displacement and deformation of neural tissue 1,15. Conversely, cortical impact injury delivers mechanical energy to the intact dura via a rigid impactor under pneumatic pressure 16,17. The weight drop/impact model is characterized by the fall of a rod with a specific mass on the closed skull 18. Among the TBI models, LFP is the most established and commonly used model to evaluate mixed focal and diffuse brain injury 19. It is reproducible and is standardized to allow for the manipulation of injury parameters. LFP recapitulates injuries observed in humans, thus rendering it clinically relevant, and allows for exploration of novel therapeutics for clinical translation 20.
We describe the detailed protocol to perform LFP procedure in mice. The injury inflicted is mild to moderate, with brain regions such as cortex, hippocampus and corpus callosum being most vulnerable. Hippocampal and motor learning tasks are explored following LFP.
1. Craniectomy
2. Induction of injury
3. Assessment of motor, cognitive and histological outcomes
4. Representative Results:
The injury induced by the LFP device is reproducible from animal to animal, particularly with sufficient surgical training. To maintain the consistency of the injury, the amount of pressure delivered to the dura by the device is monitored. The pendulum strikes a water-filled acrylic cylinder with high-pressure tubing and Luer-lok fitting which is connected to the injury hub affixed to the craniectomy site on the animal (Figure 1A). For a mild to moderate injury, the angle of the pendulum is set to generate a pressure ranging from 0.9 – 2.1 atm and an oscilloscope connected to an amplifier is used to visualize the pressure pulse (Figure 1B). Injury produces a range of righting reflex times and an increasing mortality associated with pulmonary edema. Mild injury is considered a righting reflex time of 2 – 4 min and a 0 – 5% mortality rate. Moderate injury is considered a righting reflex time of 6 – 10 min and a 10 – 20 % mortality rate. Furthermore, mice subjected to LFP may exhibit tonic posturing that may be indicative of seizure. Seizure is often associated with a compromised dura. Together, these findings suggest that the injury is causing neurological damage. Sham animals are connected to the LFP device but the pendulum is not released.
To visualize the damage induced by LFP, we have performed immunocytochemistry using antibodies which recognize astrocytes and macrophages both of which are cell types associated with a response to injury. Glial Fibrillary Acidic Protein (GFAP) staining reveals increased gliosis throughout the cortex in the region of injury whereas sham mice do not display increased astrocytosis in the equivalent site below the craniectomy (Figure 2A, B). Similarly, MAC1 staining demonstrates more macrophages surrounding the site of injury compared to mice subjected to sham surgery. In addition, there is frequently physical damage to the cortical tissue visible in mice subjected to LFP but not in sham mice (Figure 2C, D).
Behavioral testing following mild LFP can be used to assess both cognitive and motor outcomes. MWM is used to determine effects on learning and memory. Using visual cues in the testing room, sham mice rapidly became more efficient at locating the platform with each subsequent day of training in the water maze. Mice subjected to mild LFP take longer to locate the hidden platform on the first two days of testing relative to sham mice but then appear to learn the task by the third day (Figure 3A). These findings suggest that the injury reduces the rate at which the mice can acquire spatial learning. To determine the effect of injury on memory retention, a probe trial is performed 1 day after the last training session. Sham mice spend more time in the target quadrant compared to the mice subjected to mild LFP suggesting that the injury has affected the ability of the mice to recall the location of where the platform used to reside (Figure 3B). To assess locomotor function, mice are tested on the rotarod device. Mice subjected to mild LFP have shorter average latency to fall compared to the sham mice at 1, 7 and 21 days post injury (dpi) (Figure 3C). These data suggest that injured mice have impaired integrated vestibulomotor and sensorimotor function.
Figure 1. LFP device and a representative trace from the oscilloscope obtained during injury. A) The components of the LFP device are: the pendulum fixed to a stand and set at an angle predetermined to deliver the desired force, a water filled acrylic cylinder with high-pressure tubing and a male Luer-lok fitting attached, an amplifier, and an oscilloscope. B) Representative trace of pressure pulse from oscilloscope. The peak-to-peak value is 2.16 volts indicating a pressure of 1.47 atm.
Figure 2. Enhanced gliosis and an inflammatory response following LFP demonstrates the extent of injury. Frozen transverse sections (20μm) through the brain of a mouse subjected to sham surgery (A, C) or LFP injury (B, D) 7 days post injury (dpi). Cortical images are taken at the epicenter of the craniectomy. (A, B) Tissue is stained with an antibody to identify astrocytes. Glial Fibrillary Acidic Protein (GFAP) antibody (MAB360, Chemicon, 1:400) reveals a higher number of astrocytes throughout the cortex of the mouse subjected to LFP injury (arrows) compared to sham surgery. Secondary antibody is goat anti-mouse 594 (1:1000). (C. D) Tissue is stained with an antibody to identify macrophages. MAC1 antibody (MAC1-alpha chain CD11b, BD Biosciences, 1:50) reveals more macrophges and/or activated microglia around the site of injury in the cortex (arrows) compared to sham surgery. Secondary antibody is goat anti rat CY3 (1:50). Scale bar = 200μm in A and B, 100μm in C and D.
Figure 3. Behavioral testing following mild LFP demonstrates deficits in injured compared to sham mice. A) Mice subjected to mild LFP take longer to learn the task of finding the platform in the MWM than sham mice. Sham vs LFP (ave seconds ± SEM) 1 day 34.21 ± 3.02 vs 38.64 ± 2.63; 2 day 24.52 ± 2.84 vs 27.21 ± 2.11; 3 day 22.47 ± 2.00 vs 22.08 ± 2.52 (1 dpi, n = 9 sham, 10 LFP). B) Mice subjected to mild LFP spend less time in the target quadrant during the probe trial 24 hr after the last training in the MWM relative to sham mice (21 dpi, n = 10). C) Mice subjected to mild LFP fall off the rotarod device sooner than sham mice (1, 7, and 21 dpi, n = 5 sham, 8 LFP). Error bars represent SE.
The LFP method presented here models many of the neuropathalogical and behavioral outcomes of mild to moderate traumatic brain injury which is why it has become a widely used animal model of TBI. There are several critical steps to consider in order to increase the validity and reliability of this technique. For example, it is important that only animals in which the integrity of the dura has not been compromised during the craniectomy be subjected to LFP and used in the study. Furthermore, if the craniectomy is occluded by any glue or cement such that part of the dura beneath the craniectomy is not exposed to the force of the fluid pressure, the animal should be eliminated from the study. Finally, if the righting reflex time or mortality rate is not within the desired range, the animal should not be included in the study. The intensity of the pressure pulse can be increased to generate more severe injuries.
As shown in Figure 1, the configuration of the LFP device is relatively simple and the reproducibility of the degree of injury is maintained by monitoring the atmospheres of pressure on the oscilloscope. The smooth shape of the curve on the oscilloscope trace indicates that there are no air bubbles in the fluid that might interfere with the induction of the LFP injury. A test pulse should be delivered prior to inducing injury and if the oscilloscope trace does not exhibit a smooth curve, air bubbles should be removed. The duration of the pulse is approximately 20 msec which represents the induction time measured in crash test simulations. Injuries of shorter pulses are likely to produce more focal injuries. Therefore, this duration of pulse models human TBI.
The morphological and cellular changes following LFP include physical damage to the tissue as well as increased number of astrocytes and macrophages as demonstrated in Figure 2. It is well established that one of the hallmark signs of injury is the hyperplasia of astrocytes and the formation of a glial scar. The glial scar has been shown to have both beneficial and detrimental effects 24. Similarly, macrophages are known to accumulate in various tissues during the phase following injury when the healing process begins 25. Thus the increased number of GFAP and MAC1 positive cells in the LFP samples relative to the sham controls is indicative of the induction of injury. The lack of expression of those cell specific markers in sham controls indicates that the surgical manipulations alone do not have negative consequences on the health of the brain tissue and that the changes in protein expression are specific to the injury paradigm.
The behavioral consequences of mild LFP illustrated in Figure 3 include cognitive and motor deficits. The MWM findings indicate that the LFP mice eventually learn the task but at a slower rate than the sham mice and they do not recall the task as well one day after training. Thus, even mildly injured mice are less efficient than the sham mice at using external cues to process, consolidate, and store spatial information, which must be retrieved during subsequent testing. Other hippocampal-dependent cognitive tasks such as conditioned fear response have been shown to be impaired in mice subjected to LFP 26. Finally, the shorter latency to fall by LFP mice relative to sham mice in the rotarod paradigm up to 3 weeks following mild injury is an indicator of deficits in integrated vestibulomotor and sensorimotor function. A more moderate injury would reveal more striking changes in cognitive and motor function as has been shown by other groups 27-30.
In sum, the LFP is a valid model for human TBI because it fulfills many of the expected criteria. LFP provides construct validity in that it recreates the etiological processes that induce TBI in humans. Specifically, the magnitude of the force and mortality rate is similar to that which occurs in mild and moderate sports and car related injuries with the caveat that the pre-injury surgical interventions are unique to the animal model. LFP also exhibits face validity in that LFP recapitulates many of the anatomical, biochemical, neuropathological and behavioral effects observed in human TBI. There are both focal and diffuse changes detected after LFP and the lateralization of the impact allows one to compare the morphological damage on the side ipsilateral to the injury to that on the contralateral side. One caveat is that the cognitive and motor effects may be more subtle as a result of injuring only one hemisphere. Finally, LFP exhibits predictive validity and the reliability of the LFP technique enables the evaluation of various pharmacological and genetic manipulations before or after the induction of injury 20. Physiological variables such as blood pressure, blood pH and blood gasses will need to be measured in the presence and absence of a test drug to determine the mechanism of action of a therapeutic agent. However, due to the complex nature of the primary and secondary consequences of TBI, it is a difficult task to identify a single intervention that can mitigate all of the symptoms.
One future consideration for LFP technique may be the use of micro-fluid percussion which employs a microprocessor-controlled, pneumatically driven instrument to eliminate the need for calibrating the force delivered by the pendulum and to avoid operational variables such as air bubbles in the fluid 15. However, the standard LFP approach has been proven by many researchers to be a reliable and simple technique to explore the molecular mechanisms underlying the damage and recovery following TBI which will lead to better interventions and therapeutics.
The authors have nothing to disclose.
This work is funded by the New Jersey Commission on Brain Injury Research.