This article describes the procedure for the formation and visualization of a bacterial biofilm grown within an 8-well chamber slide
The chronic nature of many diseases is attributed to the formation of bacterial biofilms which are recalcitrant to traditional antibiotic therapy. Biofilms are community-associated bacteria attached to a surface and encased in a matrix. The role of the extracellular matrix is multifaceted, including facilitating nutrient acquisition, and offers significant protection against environmental stresses (e.g. host immune responses). In an effort to acquire a better understanding as to how the bacteria within a biofilm respond to environmental stresses we have used a protocol wherein we visualize bacterial biofilms which have formed in an 8-well chamber slide. The biofilms were stained with the BacLight Live/Dead stain and examined using a confocal microscope to characterize the relative biofilm size, and structure under varying incubation conditions. Z-stack images were collected via confocal microscopy and analyzed by COMSTAT. This protocol can be used to help elucidate the mechanism and kinetics by which biofilms form, as well as identify components that are important to biofilm structure and stability.
1. In Vitro Biofilm Formation
2. Visualization of Biofilm
3. Results
Figure 1. Representative 3D composite images of a biofilm formed in an 8-well chamber slide. Bacteria were labeled with Live / Dead stain wherein live bacteria fluoresce green and dead bacteria fluoresce red. (A) Composite image of entire biofilm showing distinct architecture with towers and water channels. (B) Same biofilm as in (A), now seen in cross section.
Understanding the mechanism by which biofilms form, as well as characterizing their matrix components, is an area of intense interest. This protocol can be used to help identify proteins or other constituents that contribute to the structural integrity of the biofilm, as well as help identify and target proteins which may lend themselves to a therapeutic application.
The incubation times and dilutions in the above described protocol have been established for optimal biofilm formation by nontypeable Haemophilus influenzae (NTHI). Some preliminary work may be needed to optimize these steps for other bacterial species (i.e. initial dilution and incubation time needed to achieve mid-log phase growth). The 1:2500 dilution for the initial seeding of the chambers was established to ensure that a robust biofilm would develop in the chamber slides as induced by this organism and within the incubation times stated, without the biofilm overgrowing the chamber and/or exhausting available nutrients. Accordingly, the initial dilution and or incubation times may need to be adjusted for other bacterial species.
The authors have nothing to disclose.
The work was funded by NIDCD/ NIH R01DC003915 to L.O. Bakaletz.
Material Name | Type | Company | Catalogue Number | Comment |
---|---|---|---|---|
Chocolate II agar | Fisher | B21267X | ||
8-well chamber slides | Fisher | 12-656-18 | ||
BacLight Live/Dead bacterial viability kit | Fisher | NC9439023 | ||
BHI | Fisher | 211059 | ||
Hemin | Sigma | H5533 | ||
β-NAD | Sigma | N7004 | ||
Permaslip mounting media | Fisher | NC9693613 |