Summary

Автоматизированный анализ Шолл оцифрованных нейронов морфологии в различных масштабах

Published: November 14, 2010
doi:

Summary

Мы разработали компьютерную программу для анализа нейронной морфологии. В сочетании с двумя существующими открытыми инструменты анализа источников, наша программа выполняет Шолл анализа и определяет количество невриты, точек ветвления и аксонов советы. Анализы выполняются так, что локальные изменения в морфологии аксонов можно наблюдать.

Abstract

Neuronal morphology plays a significant role in determining how neurons function and communicate1-3. Specifically, it affects the ability of neurons to receive inputs from other cells2 and contributes to the propagation of action potentials4,5. The morphology of the neurites also affects how information is processed. The diversity of dendrite morphologies facilitate local and long range signaling and allow individual neurons or groups of neurons to carry out specialized functions within the neuronal network6,7. Alterations in dendrite morphology, including fragmentation of dendrites and changes in branching patterns, have been observed in a number of disease states, including Alzheimer’s disease8, schizophrenia9,10, and mental retardation11. The ability to both understand the factors that shape dendrite morphologies and to identify changes in dendrite morphologies is essential in the understanding of nervous system function and dysfunction.

Neurite morphology is often analyzed by Sholl analysis and by counting the number of neurites and the number of branch tips. This analysis is generally applied to dendrites, but it can also be applied to axons. Performing this analysis by hand is both time consuming and inevitably introduces variability due to experimenter bias and inconsistency. The Bonfire program is a semi-automated approach to the analysis of dendrite and axon morphology that builds upon available open-source morphological analysis tools. Our program enables the detection of local changes in dendrite and axon branching behaviors by performing Sholl analysis on subregions of the neuritic arbor. For example, Sholl analysis is performed on both the neuron as a whole as well as on each subset of processes (primary, secondary, terminal, root, etc.) Dendrite and axon patterning is influenced by a number of intracellular and extracellular factors, many acting locally. Thus, the resulting arbor morphology is a result of specific processes acting on specific neurites, making it necessary to perform morphological analysis on a smaller scale in order to observe these local variations12.

The Bonfire program requires the use of two open-source analysis tools, the NeuronJ plugin to ImageJ and NeuronStudio. Neurons are traced in ImageJ, and NeuronStudio is used to define the connectivity between neurites. Bonfire contains a number of custom scripts written in MATLAB (MathWorks) that are used to convert the data into the appropriate format for further analysis, check for user errors, and ultimately perform Sholl analysis. Finally, data are exported into Excel for statistical analysis. A flow chart of the Bonfire program is shown in Figure 1.

Protocol

1. Перед началом работы: 1) E18 крысы вскрытия: Стандартные методы вскрытия E18 нейроны гиппокампа были ранее описаны 13. Для того чтобы использовать Костер программу для анализа морфологических характеристик невриты, 8 бит. TIF изображения отдельных нейроно…

Discussion

Костер программа полуавтоматической программа для анализа дендритов и аксонов морфологии. Это значительно повышает эффективность и точность анализа Шолл за выполнение анализа вручную. Кроме того, Костер Программа сохраняет данные на каждом шаге процесса, что позволяет проводить ауд…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Эта работа была частично поддержана Busch биомедицинских Грант, NSF гранта IBN-0548543, NSF гранта IBN-0919747, март Dimes фонд Грант 1-FY04-107, марте Dimes фонд Грант 1-FY08-464 (для BLF). МКК и CGL были поддержаны NIH биотехнологии Обучение Грант T32 GM008339-20, и CGL была также поддержана NJ Комиссии по исследованию спинного мозга Predoctoral стипендий 08-2941-SCR-E-0.

Materials

Material Name Type Company Catalogue Number Comment
NeuronJ plugin       http://www.imagescience.org/meijering/software/neuronj/
ImageJ software       http://rsbweb.nih.gov/ij/
Bonfire program       http://lifesci.rutgers.edu/~firestein
NeuronStudio       http://research.mssm.edu/cnic/tools-ns.html
MatLab Program   MathWorks    

References

  1. Elston, G. N. Pyramidal cells of the frontal lobe: all the more spinous to think with. J Neurosci. 20, (2000).
  2. Koch, C., Segev, I. The role of single neurons in information processing. Nat Neurosci. , 1171-1177 (2000).
  3. Poirazi, P., Mel, B. W. Impact of active dendrites and structural plasticity on the memory capacity of neural tissue. Neuron. 29, 779-796 (2001).
  4. Schaefer, A. T., Larkum, M. E., Sakmann, B., Roth, A. Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. J Neurophysiol. 89, 3143-3154 (2003).
  5. Vetter, P., Roth, A., Hausser, M. Propagation of action potentials in dendrites depends on dendritic morphology. J Neurophysiol. 85, 926-937 (2001).
  6. Hausser, M., Spruston, N., Stuart, G. J. Diversity and dynamics of dendritic signaling. Science. 290, 739-744 (2000).
  7. Brette, R. Simulation of networks of spiking neurons: a review of tools and strategies. J Comput Neurosci. 23, 349-398 (2007).
  8. Arendt, T., Zvegintseva, H. G., Leontovich, T. A. Dendritic changes in the basal nucleus of Meynert and in the diagonal band nucleus in Alzheimer’s disease–a quantitative Golgi investigation. Neuroscience. 19, 1265-1278 (1986).
  9. Harrison, P. J. The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain. 122, 593-624 (1999).
  10. Lewis, D. A., Glantz, L. A., Pierri, J. N., Sweet, R. A. Altered cortical glutamate neurotransmission in schizophrenia: evidence from morphological studies of pyramidal neurons. Ann N Y Acad Sci. 1003, 102-112 (2003).
  11. Kaufmann, W. E., Moser, H. W. Dendritic anomalies in disorders associated with mental retardation. Cereb Cortex. 10, 981-991 (2000).
  12. Georges, P. C., Hadzimichalis, N. M., Sweet, E. S., Firestein, B. L. The yin-yang of dendrite morphology: unity of actin and microtubules. Mol Neurobiol. 38, 270-284 (2008).
  13. Firestein, B. L. Cypin: a cytosolic regulator of PSD-95 postsynaptic targeting. Neuron. 24, 659-672 (1999).
check_url/2354?article_type=t

Play Video

Cite This Article
Kutzing, M. K., Langhammer, C. G., Luo, V., Lakdawala, H., Firestein, B. L. Automated Sholl Analysis of Digitized Neuronal Morphology at Multiple Scales. J. Vis. Exp. (45), e2354, doi:10.3791/2354 (2010).

View Video