A subscription to JoVE is required to view this content.  Sign in or start your free trial.
Assay for Cell Death: Chromium Release Assay of Cytotoxic Ability
  • 00:01Concepts
  • 02:39Performing the Experiment
  • 09:44Results

細胞死に対するアッセイ:細胞毒性能のクロム放出アッセイ

English

Share

Overview

ソース: フランシス V. シャアスタッド1,2, ホイットニー・スワンソン2,3,トーマス・S・グリフィス1,2,3,4
1ミネソタ大学、ミネアポリス、MN 55455
2ミネソタ大学免疫学センター,ミネアポリス,MN 55455
3ミネソタ大学泌尿器科,ミネアポリス,MN 55455
4ミネソタ大学、ミネアポリス、MN 55455

免疫系の細胞の主な機能の一つは、ウイルスに感染しているか、腫瘍細胞に変換を受けた標的細胞を除去することです。免疫細胞の細胞傷害性を測定するためのインビトロアッセイは、長年にわたり実験室で定番となっています。これらのアッセイは、T細胞、NK細胞、または抗原特異的または非特異的な方法で標的細胞を殺す他の免疫細胞の能力を決定するために使用されている。死のリガンド(例えば、ファスリガンドまたはTRAIL)、サイトカイン(例えば、IFNgまたはTNF)、または細胞傷害性顆粒(すなわち、フェクター細胞によって発現されるペロフィン/グランザイムB)は、標的細胞死を誘発することができるいくつかの方法である。近年の腫瘍免疫療法研究の爆発的な増加に伴い、患者の転帰を改善するために免疫細胞の細胞傷害活性を高める薬剤を見つけることに関心が高まっています。逆に、一部の疾患は、免疫細胞細胞傷害活性の過度の活性によって顕著であり、その結果、これらの応答を緩和する薬剤を同定する努力をもたらす。したがって、ユーザーが任意の数の異なるエフェクター細胞、標的細胞、および/または応答修飾子を実験設計に容易に統合できるアッセイを有することは、エフェクター細胞および/の細胞傷害性を迅速に評価する貴重な手段として役立つことができる。またはターゲット セルの応答性。

これらのインビトロアッセイは、異なる細胞集団の混合を含むだけでなく、エフェクターおよび標的細胞の両方の比較的少ない数を使用する。したがって、アッセイの必要性の1つは、標的細胞を容易に検出および定量することができる方法で標識し、ユーザがエフェクター細胞によって媒介される「比的なリシスのパーセント」を決定できるようにすることである。放射能-特に、Na2 51 CrO4の形態のクロム51(51Cr)は、標的細胞内の細胞タンパク質を迅速かつ非特異的に標識する安価な方法である(1)。短い標識および総アッセイ時間は、標的細胞の数および/または表現型の有意な変化の可能性を減少させ、アッセイの結果に影響を与える可能性がある。エフェクター細胞の細胞傷害活性の結果として標的細胞の膜完全性が失われた場合、標的細胞内の51Cr標識細胞タンパク質が培養上清に放出され、定量。インビトロでの免疫細胞の機能を調べるアッセイと同様に、実験の性能向上を考慮すべき重要な考慮事項が数多くあります。最も重要な特徴の1つは、健康なエフェクター(最大細胞傷害活性のために)および標的(最大応答性および最小限の自発的死/51Cr放出)細胞を使用することである。エフェクターと標的細胞接触が必要である(細胞接触を促進するために丸底96ウェルプレートの一般的な使用につながる)(2)。最後に、データ分析は、正および負の制御ターゲット細胞集団を含めることに依存します。

以下のプロトコルは、Europiumを用いて非放射性バージョンが最近開発されたが、エフェクター細胞の集団の細胞傷害性を測定するための標準的な51Cr放出アッセイを行うための手順を概説する。51名Crは強力なγ放射エミッタです。したがって、このアッセイの使用には、適切な放射線安全訓練、専用の実験室スペース、ガンマカウンター、および放射性サンプルの処分が必要です。

このアッセイにおけるイベントの一般的なシーケンスは次のとおりです: 1) 51Cr ラベル付きターゲットを準備します。2)エフェクターセルを準備し、ターゲット細胞が標識している間にプレートに追加します。3)プレートにラベル付きターゲットを追加します。4)インキュベートプレート;5)上清を収穫;6)カウンターでサンプルを実行した後にデータを分析します。サンプルは一般的に三つ編みで調製され、微妙なピペッティングの違いを考慮して平均化されます。

適切なPPEは、このアッセイのために重要です。具体的には、ユーザーはラボコートと手袋を着用する必要があります。研究室や施設に基づき、安全メガネが必要となる場合があります。すべてのステップの間に安全な貯蔵および使用のための十分な鉛の保護があるべきである。最後に、51Crを使用するための専用のラボスペースと機器が確保され、51Crのサンプルがどこに保管されているかを示す適切なサイネージと、可能な限りスペースを調査するためのガンマプローブを装備したガイガーカウンターが必要です。汚染。

本研究室では、ヒト末梢血単核細胞(PBMC)、(CpG刺激対非刺激)が黒色腫細胞を殺す能力を決定し、ヒト黒色腫細胞株WM793をモデル化し、クロム放出アッセイを用いて行う。

Procedure

手順の概要 細胞死を測定するための典型的な51Cr放出アッセイには、次の手順が含まれます。 まず、標的細胞にNa2[51Cr]O4で標識される。これは、アッセイ中のエフェクター細胞と区別する。 標的細胞が標識している間に、エフェクター細胞が集められ、シリアル希釈技術を用いて、エフェクター細胞の減少滴定…

Results

In this example, effector cells stimulated with CpG (Figure 1, black circles) killed the target cells more effectively, as the ratio of effector cells to target cells increased. This increase was not observed in the unstimulated PBMCs (white circles), indicating that CpG stimulation is necessary for the observed increase in target cell lysis.

Figure 1
Figure 1: 51Cr assay scatter plot: Tumoricidal activity by human PBMCs, unstimulated (white circles) and after stimulation with CpG (black circles), tested at different effector: target cell ratios (E: T) ratios (ranging from. 50:1 to 1.5:1).

Applications and Summary

The assay described here has considerable flexibility, as a variety of effector and target cells can be used depending on the question being asked. For example, effector cell specificity can be determined by using different target cells or the mechanism of effector cell killing can be determined by using cells deficient in specific proteins or using protein specific inhibitors. A major problem with the 51Cr release assay is the potential for a high spontaneous release rates by the target cells. When cultured alone (without effector cells), the spontaneous release of 51Cr by the target cells should ideally be no more than 30% of the total ("maximal") release by the target cells immediately lysis. Higher spontaneous release rates may be due to using unhealthy target cells, either due to poor health (e.g., extended culture of a cell line) or an overly long labelling period.

References

  1. Brunner, K. T., Mauel, J., Cerottini, J. C. and Chapuis. B. Quantitative assay of the lytic action of immune lymphoid cells on 51Cr-labelled allogeneic target cells in vitro; inhibition by isoantibody and by drugs. Immunology, 14 (2):181-196, (1968).
  2. Kemp, T. J., B. D. Elzey, and T. S. Griffith. Plasmacytoid dendritic cell-derived IFN-alpha induces TNF-related apoptosis-inducing ligand/Apo-2L-mediated antitumor activity by human monocytes following CpG oligodeoxynucleotide stimulation. The Journal of Immunology, 171 (1): 212-218, (2003).

Transcript

In this video you will observe how to perform the chromium release assay and determine the cytotoxic potential of the effector cells.

Immune cells are responsible for identifying and removing potentially harmful cells, like cancer or virus-infected cells, from the body, which is an integral part of the immune response. Several immune cells, like T-cells and NK cells, possess a property known as cytotoxic potential, which is the ability to identify target cells and secrete proteins that induce protein degradation, lysis, and death of those target cells. Quantifying cytotoxic potential is critical for measuring immune cell activation and potency, and the chromium release assay is commonly used for this purpose.

This method enables users to compare cytoxicity induced by specific types of immune cells under different conditions, which is valuable for studying cancer immunotherapy and immunity related diseases. To begin, the target cells, like cancer cells, are incubated with a radioactive isotope, chromium 51, which is taken up by the cells. Next, these radio labeled cells are co-cultured with the isolated immune cells of interest, also called the effector cells, in a round bottom, 96- well plate to facilitate interaction between the two cell types.

The overall setup of the assay involves incubating a specific number of target cells with different concentrations of the immune cells, along with appropriate controls. The co-culture allows the effector cells to induce apoptosis and lysis in the target cells, resulting in the release of the intracellular chromium 51 into the supernatant. Then, at a preoptimized time point, the supernatant containing the released chromium is harvested from all the wells. The chromium 51, being radioactive, spontaneously undergoes radioactive decay to emit gamma radiation. The gamma radiation levels in the supernatants from all the wells in the assay plate represent a quantifiable output of the lysis of the target cells. This is measured using a gamma counter, which is then used to determine the cytotoxic potential of the immune cells.

To begin, the target cells, human melanoma cell line WM793 in this example, are prepared into a single cell suspension. To do this, first remove the media from the tissue culture flask and wash the cells with five milliliters of 1X PBS. Decant the PBS and then add one milliliter of trypsin to the plate for approximately two minutes. Gently tap the flask to loosen the cells from the flask surface and then add five milliliters of RPMI media to the flask. Pipette the media up and down to collect the cells and add this suspension to a 15 milliliter conical tube.

Place the tube in the centrifuge for five minutes at 1200 RPM. Next, remove the media from the tube making sure not to disrupt the cell pellet. Gently flick the bottom of the tube to disrupt the cell pellet and add 10 milliliters of media to the tube. Then, gently pipette the media up and down to bring the cells into suspension. Next, determine the cell concentration using a hemocytometer and transfer two milliliters of the original cell suspension to a new 15 milliliter conical tube. Place the tube into a centrifuge and pellet the cells at 12 hundred RPM for five minutes. After centrifugation, pour the excess media out of the tube into a waste container. Briefly vortex the tube to resuspend the cell pellet in the small volume of medium left behind.

Next, prepare to use Chromium 51 by moving to a lab space dedicated for this particular radioactivity. There should be ample lead shielding for safe storage and use of the Chromium 51 during all steps, as well as proper signage to indicate where samples with Chromium 51 are being kept. A Geiger counter equipped with a pancake probe is also necessary to serve in the space for possible contamination.

Once set up for the proper use of radioactivity, add 100 microcuries of Chromium 51 directly to the target cell suspension. Then, add a small piece of radioactive tape to the tube to indicate that the sample and tube are now radioactive. Place the tube in a 37 degree celsius incubator with a lead shield and incubate for an hour, flicking the tube every 15 to 20 minutes.

While the target cells are labeling, prepare a single cell suspension of effector cells. In this example, human peripheral blood mono nuclear cells, or PDMCs, were isolated from whole blood by standard density gradient centrifugation to a concentration of 5 times 10 to the 6th. Transfer this effector cell suspension into a disposable reagent reservoir and then add 200 microliters of this suspension into each well of row B in a 96-well round-bottom plate. Next, add 100 microliters of RPMI to each well in row C through G of the plate.

Now, begin performing serial dilutions of the PBMCs to have a range of effector cell numbers by first removing 100 microliters of the cells in the wells in row B and adding this to row C. Then, further dilute the effector cells by transferring 100 microliters of cells from row C to row D. Continue the serial dilution. Once row G is reached, move 100 microliters from the wells to leave a final volume of 100 microliters in each well in that row. Next, add 100 microliters of tissue culture medium to the wells in row A to serve as a control for the spontaneous release of Chromium 51 from the target cells, as no effector cells should be added to this row. Then, place a plate into a 37 degree celsius incubator until the target cells are ready to be added.

After the incubation period, remove the target cells from the incubator and wash with 5 milliliters of FBS to remove any excess Chromium 51. Then, place the tube in a designated centrifuge and spin at 1200 rpm for 5 minutes. Remove the radioactive FBS wash into an appropriate waste container and repeat the wash step by resuspending the pellet in a fresh 5 milliliters of FBS. Place the tube in a designated centrifuge and spin the cells again at 1200 rpm for 5 minutes. Remove the second wash and check the pellet for incorporated radioactivity using a Geiger counter. Finally, Resuspend the pellet in 10 milliliters of complete medium and pour the Chromium 51 labeled, target cell suspension into a disposable reagent reservoir. Then, add 100 microliters of these labeled target cells to every well of the 96-well effector cell plate. Next, add 100 microliters of 1% NP-40 in water to the wells in row H to lyse all the target cells this each row. These wells will be used as a control to determine the total counts per minute, or cpm.

Now that the plate is prepared, secure the lid by adding a small piece of tape to the each side of the plate and place a piece of radioactive tape on the lid to indicate it contains chromium 51. Then, place the plate in a centrifuge marked to handle radioactive samples. If only one experimental plate is being used, add a balance plate to the centrifuge. Set the centrifuge to 1200 rpm, and bring the plate up to speed. Once at the speed, stop the machine. Remove the plate from the centrifuge. Then, place the plate in a 37 degree celsius incubator with a small piece of lead shielding over the plate for additional safety. Incubate for 16 hours to allow the target cells to lyse.

At the end of the incubation period, carefully remove the tape around the edge of the plate, and remove the lid. Next, place the harvesting frame on the plate making sure to confirm the small filter discs are in place for each of the cotton plugs. Now, slowly and gently press the cotton plugs into the wells. After approximately ten seconds, release the pressure on the cotton plugs, and then transfer the cotton plugs to tube strips. Place each of these tubes into a secondary FACS tube. Finally, load the FACS tubes onto a gamma counter and run the samples to quantitate the amount of chromium 51 released in each condition. Carefully record the order in which the tubes were loaded into the counter.

Here, unstimulated PBMCs were added to the first 3 lanes and CPG stimulated PMBCs were added to lanes 4 through 6. In this example, the counts per minute were entered into the cells of a spreadsheet in the same manner as the samples were laid out in the original plate and the averages of the triplicates were calculated. For example, for the first condition, cells A1, A2, and A3 were averaged in cell I3. Once the averages are determined, the percent of specific lysis for each condition can be calculated using this formula. For example, to calculate the percent specific lysis for the unstimulated cells that had a ratio of 50 to 1 effector cells to target cells the spontaneous CPM, which in this example, is 1164.67, was subtracted from the experimental CPM, 1129. 67. This number can then be divided by the difference between the maximum CPM and the spontaneous CPM, and then multiplied by 100 to give the percent specific lysis. This is then calculated for each condition. These data can then be graphed to show comparison of the E to T ratio with the percent specific lysis for both the unstimulated PBMCs, and the CPG stimulated PBMCs. In this example, effector cells stimulated with CPG more effectively killed target cells as the ratio of effector cells to target cells increased. This increase was not observed in the unstimulated PBMCs, indicating that CPG stimulation is necessary for the observed increase in target cell lysis.

Tags

Cite This
JoVE Science Education Database. JoVE Science Education. Assay for Cell Death: Chromium Release Assay of Cytotoxic Ability. JoVE, Cambridge, MA, (2023).