Back to chapter

12.4:

水溶液及び水和熱

JoVE Core
Chemistry
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Chemistry
Aqueous Solutions and Heats of Hydration

Languages

Share

Ionic solutes are held together by attractive interactions called Coulombic forces. When ionic solutes are dissolved in water, the hydrogen bonds between the water molecules break and disrupt the Coulombic forces between the ions. Breaking up an ionic crystal lattice into its constituent ions in this manner requires a large energy input and, thus, the enthalpy of the solute is an endothermic process. The energy released when one mole of ionic solid is formed from the constituent gaseous ions is called the lattice energy and is always exothermic. Thus, the enthalpy to break one mole of the solute into its components is equal and opposite to the lattice energy. However, when an ionic lattice is broken in an aqueous solution, each ion is surrounded and stabilized through ion-dipole interactions with the oppositely charged end of the water dipole. This phenomenon is called hydration. The enthalpy change associated with the dissolution of one mole of ions in water is known as the heat of hydration. It is a combination of the enthalpy of the solvent and the enthalpy of mixing. Since the ion-dipole interactions between a hydrated ion and the water molecules are much stronger than the hydrogen bonds in water alone, hydration is always an exothermic process. The overall enthalpy of the solution is a sum of the endothermic enthalpy of the solute and the exothermic heat of hydration and therefore depends on the relative magnitudes of these two terms. If the enthalpy of the solute is less than the heat of hydration, the enthalpy of solution will be negative, and dissolution will be exothermic—as seen in a sodium hydroxide solution. If the enthalpy of the solute is greater than the heat of hydration, the enthalpy of  solution will be positive and dissolution will be endothermic—as in an ammonium chloride solution. If the enthalpy of the solute is much greater than the heat of hydration, the solute will remain insoluble in water—as seen in the case of calcium sulfate. If the two terms are close to equal, the enthalpy of solution will be nearly zero, as it is for sodium chloride. Such solutes do not change the temperature of the solution.

12.4:

水溶液及び水和熱

水をはじめとする極性分子は、イオンに引き寄せられます。イオンと双極子を持つ分子との間の静電引力をイオン-双極子引力と呼びます。これらの引力は、イオン性化合物の水への溶解に重要な役割を果たしています。

イオン化合物が水に溶けると、固体中のイオンが分離して溶液中に均一に分散します。これは、水分子がイオンを取り囲んで溶解し、イオン間の強い静電力が減少するためです。これが解離と呼ばれる物理的変化です。イオン性化合物は、ほとんどの場合、溶解するとほぼ完全に解離してしまうため、強電解質に分類されます。イオン性化合物は、わずかに溶けても完全に解けてしまうため、強電解質となります。

固体のKClを水に加えると、顕微鏡観察レベルではどうなるでしょうか。イオン双極子力は、極性のある水分子のプラス(水素)の端を固体表面のマイナスの塩化物イオンに引きつけ、マイナス(酸素)の端をプラスのカリウムイオンに引きつけます。水分子は個々のK+とClイオンを取り囲み、イオン同士を結びつける強いイオン間力を弱めて、溶解したイオンとして溶液中に移動させることができます。静電引力を克服することで、希薄な溶液中で水和イオンがそれぞれ独立して運動することが可能となり、イオンは未溶解の化合物の固定された位置から溶液中に広く分散した溶解したイオンとなります。

上記の文章は以下から引用しました。Openstax, Chemistry 2e, Section 11.2: Electrolytes.