Summary

Генерация органоидов сетчатки из здоровых плюрипотентных стволовых клеток, вызванных заболеваниями сетчатки человека

Published: December 09, 2022
doi:

Summary

Этот протокол описывает эффективный метод дифференциации ИПСК в кластеры глазных полей и получения нейроретинальных органоидов с использованием упрощенных условий культивирования с участием как адгезивных, так и суспензионных систем культивирования. Другие типы глазных клеток, такие как RPE и эпителий роговицы, также могут быть выделены из зрелых глазных полей в культурах сетчатки.

Abstract

Плюрипотентные стволовые клетки могут генерировать сложные тканевые органоиды, которые полезны для исследований моделирования заболеваний in vitro и для разработки регенеративной терапии. Этот протокол описывает более простой, надежный и ступенчатый метод генерации органоидов сетчатки в гибридной системе культивирования, состоящей из адгезивных монослойных культур в течение первых 4 недель дифференцировки сетчатки до появления отчетливых, самоорганизующихся первичных кластеров глазного поля (EFP). Кроме того, круглые и полупрозрачные нейроретинальные островки в форме пончика внутри каждого EFP вручную собирают и культивируют под суспензией с использованием неадгезивных культуральных чашек в среде дифференцировки сетчатки в течение 1-2 недель для получения многослойных 3D-оптических чашек (OC-1M). Эти незрелые органоиды сетчатки содержат пролиферирующие PAX6+ и ChX10+ мультипотентные предшественники сетчатки. Клетки-предшественники линейно самоорганизуются внутри органоидов и выглядят как отдельные радиальные бороздки. Через 4 недели после культивирования суспензии предшественники сетчатки подвергаются постмитотической остановке и дифференцировке линий с образованием зрелых органоидов сетчатки (OC-2M). Предшественники, зафиксированные фоторецепторами, развиваются в самых внешних слоях органоидов сетчатки. Эти фоторецепторные клетки CRX+ и RCVRN+ морфологически созревают, чтобы демонстрировать внутренние сегментоподобные расширения. Этот метод может быть использован для получения органоидов сетчатки с использованием эмбриональных стволовых клеток человека (hESCs) и индуцированных плюрипотентных стволовых клеток (iPSCs). Все шаги и процедуры четко объясняются и демонстрируются для обеспечения воспроизводимости и более широкого применения в фундаментальной науке и трансляционных исследованиях.

Introduction

Сетчатка представляет собой светочувствительную ткань, присутствующую в задней части глаза позвоночных, которая преобразует световые сигналы в нервные импульсы с помощью биохимического явления, известного как путь фототрансдукции. Начальные нервные импульсы, генерируемые в фоторецепторных клетках сетчатки, передаются другим интернейронам сетчатки и ганглиозным клеткам сетчатки (RGC) и достигают зрительной коры головного мозга, что помогает в восприятии изображения и визуальной реакции.

По данным Всемирной организации здравоохранения (ВОЗ), примерно 1,5 миллиона детей слепы, из которых 1 миллион находится в Азии. Наследственная дистрофия сетчатки (ВМД) является основным заболеванием, приводящим к слепоте, которое поражает 1 из 4 000 человек во всем мире 1,2,3, в то время как распространенность слепоты, связанной с возрастной макулярной дегенерацией (ВМД), колеблется от 0,6% до 1,1% в развивающихся странах 4. IRD вызваны наследственными генетическими дефектами в более чем 300 различных генах, участвующих в развитии и функционировании сетчатки5. Такие генетические изменения приводят к нарушению нормальных функций сетчатки и постепенной дегенерации клеток сетчатки, а именно фоторецепторных клеток и пигментного эпителия сетчатки (RPE), что приводит к тяжелой потере зрения и слепоте. Огромный прогресс был достигнут в других условиях ослепления, связанных с роговицей, хрусталиком и т. Д. Однако дистрофии сетчатки и атрофии зрительного нерва на сегодняшний день не имеют доказанной терапии. Поскольку сетчатка взрослого человека не имеет стволовых клеток6, альтернативные источники, такие как эмбриональные стволовые клетки (ЭСК) и индуцированные плюрипотентные стволовые клетки (ИПСК), полученные от пациента, могут обеспечить неограниченный запас желаемых типов клеток и иметь большие перспективы для разработки сложных тканевых органоидов, необходимых для исследований моделирования заболеваний in vitro и для разработки регенеративной терапии7, 8,9,10.

Несколько лет исследований сетчатки привели к лучшему пониманию молекулярных событий, которые организуют раннее развитие сетчатки. Большинство протоколов для получения клеток сетчатки и 3D-органоидов из PSC направлены на повторение этих событий развития in vitro путем культивирования клеток в сложном коктейле факторов роста и малых молекул для поэтапной модуляции известных биологических процессов. Образующиеся таким образом органоиды сетчатки состоят из основных клеток сетчатки: ганглиозных клеток сетчатки (RGCs), интернейронов, фоторецепторов и пигментного эпителия сетчатки (RPE)11,12,13,14,15,16,17,18,19. Несмотря на успешные попытки моделирования IRD с использованием органоидов сетчатки, потребность в сложном коктейле факторов роста и малых молекул во время дифференцировки и относительно низкая эффективность генерации органоидов сетчатки представляют собой серьезную проблему для большинства протоколов. Они в основном включают образование эмбриоидных тел с последующей их ступенчатой дифференцировкой в линии сетчатки с использованием сложных условий культивирования на разных стадиях развития in vitro 20,21,22.

Здесь сообщается об упрощенном и надежном методе разработки сложных 3D-нейроретинальных органоидов из здоровых контрольных и специфических для заболевания сетчатки ИПСК. Описанный здесь протокол использует прямую дифференциацию почти сливающихся культур hiPSC без необходимости формирования эмбриоидных тел. Кроме того, сложность питательной среды упрощается, что делает ее экономически эффективным и воспроизводимым методом, который может быть легко принят новыми исследователями. Он включает в себя гибридную культуральную систему, состоящую из адгезивных монослойных культур в течение первых 4 недель дифференцировки сетчатки до появления отчетливых, самоорганизующихся первичных кластеров глазного поля (EFP). Кроме того, круглые нейроретинальные островки внутри каждого EFP вручную собирают и выращивают в суспензионных культурах в течение 1-2 недель для получения многослойных 3D-чашек сетчатки или органоидов, состоящих из пролиферирующих предшественников нейроретинальности PAX6+ и CHX10+. Расширенное культивирование органоидов сетчатки в 100 мкМ тауринсодержащей среде в течение еще 4 недель привело к появлению предшественников фоторецепторов RCVRN+ и CRX+ и зрелых клеток с рудиментарными внутренними сегментоподобными расширениями.

Protocol

Все эксперименты с использованием ИПСК проводились в асептическом режиме, в соответствии со стандартной лабораторной практикой, руководящими принципами по этике и биобезопасности, а также с одобрения регулирующих органов, таких как Институциональный комитет по этике (IEC), Институцион…

Representative Results

Дифференциация ИПСК в глазные линии достигается путем культивирования клеток в различных коктейлях питательной среды, содержащих добавки и факторы роста, последовательными шагами в разные моменты времени, как описано на рисунке 1. Культуры hiPSC поддерживаются в среде Ess…

Discussion

ИПСК являются мощным инструментом для изучения развития органов и тканей in vitro. Повторение фенотипа заболевания путем дифференциации здоровых и специфических для заболевания ИПСК в сторону линии сетчатки может помочь получить новое представление о патофизиологии различных форм…

Declarações

The authors have nothing to disclose.

Acknowledgements

Авторы выражают признательность за научно-техническую поддержку со стороны д-ра Читры Каннабиран, генетика; Д-р Субхадра Джалали, консультант по сетчатке; Доктор Милинд Найк, окулопластический хирург; и д-р Свати Калики, офтальмолог-онколог из Глазного института LV Prasad, Хайдарабад, к созданию нормальных и специфических для пациента линий ИПСК. Авторы признают гранты на исследования и разработки от Совета по научным и инженерным исследованиям, Департамента науки и технологий (IM), (SB/SO/HS/177/2013), Департамента биотехнологии (IM), (BT/PR32404/MED/30/2136/2019) и старших научных стипендий от ICMR (S.M., D.P.), UGC (T.A.) и CSIR (V.K.P.), правительство Индии.

Materials

0.22 µm Syringe filters TPP 99722 
15 mL centrifuge tube TPP 91015
50 mL centrifuge tube TPP 91050
6 well plates TPP 92006
Anti-Chx10 Antibody; Mouse monoclonal Santa Cruz SC365519 1:50 dilution
Anti-CRX antibody; Rabbit monoclonal Abcam ab140603 1:300 dilution
Anti-MiTF antibody, Mouse monoclonal Abcam ab3201 1:250 dilution
Anti-Recoverin Antibody; Rabbit polyclonal      Millipore AB5585 1:300 dilution
B-27 Supplement (50x), serum free Thermo Fisher 17504044
Basic Fibroblast growth factor (bFGF) Sigma Aldrich F0291
Centrifuge 5810R Eppendorf
Coplin Jar (50 mL) Tarson
Corning Matrigel hESC-Qualified Matrix Corning 354277
CryoTubes Thermo Fisher V7884
DMEM/F-12, GlutaMAX supplement (basal medium) Thermo Fisher 10565-018
DreamTaq DNA polymerase Thermo Fisher EP0709
Dulbeco’s Phosphate Buffered Saline Thermo Fisher 14190144
Essential 8 medium kit Thermo Fisher A1517001
Ethylene diamine tetraaceticacid disodium salt dihydrate (EDTA) Sigma Aldrich E5134
Falcon Not TC-treated Treated Petri Dish, 60 mm  Corning 351007
Fetal Bovine Serum, qualified, United States  Gibco 26140079
GelDocXR+ with Image lab software BIO-RAD Agarose Gel documentation system 
GlutaMAX Supplement Thermo Fisher 35050061
Goat anti-Mouse IgG (H+L), Alexa Fluor 488 Invitrogen A11001 1:300 dilution
Goat anti-Mouse IgG (H+L), Alexa Fluor 546 Invitrogen A11030 1:300 dilution
Goat anti-Rabbit IgG (H+L), Alexa Fluo 546 Invitrogen A11035 1:300 dilution
Goat anti-Rabbit- IgG (H+L), Alexa Fluor 488 Invitrogen A11008 1:300 dilution
HistoCore MULTICUT Leica For sectioning
KnockOut Serum Replacement Thermo Fisher 10828028
L-Acsorbic acid Sigma Aldrich A92902
MEM Non-Essential Amino Acids Solution (100x) Thermo Fisher 11140-050
N2 supplement (100x) Thermo Fisher 17502048
NanoDrop 2000 Thermo Fisher To quantify RNA
Paraformaldehyde Qualigens 23995
Pasteur Pipets, 9 inch, Non-Sterile, Unplugged Corning 7095D-9
Penicillin-Streptomycin  Thermo Fisher 15140-122
Recombinant Anti-Otx2 antibody , Rabbit monoclonal Abcam ab183951 1:300 dilution
Recombinant Anti-PAX6 antibody; Rabbit Monoclonal Abcam ab195045 1:300 dilution
Recombinant Anti-RPE65 antibody, Rabbit Monoclonal Abcam ab231782 1:300 dilution
Recombinant Human Noggin Protein R&D Systems 6057-NG
SeaKem LE Agarose Lonza 50004
Serological pipettes 10 mL TPP 94010
Serological pipettes 5 mL TPP 94005
Sodium Chloride Sigma Aldrich S7653
Sodium Citrate Tribasic dihydrate Sigma Aldrich S4641
Starfrost (silane coated) microscopic slides Knittel
SuperScript III First-Strand Synthesis System Thermo Fisher 18080051
SuperScript III First-Strand Synthesis System for RT-PCR Invitrogen 18080051
Triton X-100 Sigma Aldrich T8787
TRIzol Reagent Invitrogen 15596026
UltraPure 0.5 M EDTA, pH 8.0 Thermo Fisher 15575020
VECTASHIELD Antifade Mounting Medium with DAPI  Vector laboratories H-1200 
Vitronectin Thermo Fisher A27940
Y-27632 dihydrochloride (Rho-kinase inhibitor) Sigma Aldrich Y0503
Zeiss LSM 880 Zeiss Confocal microscope

Referências

  1. Dandona, R., et al. Moderate visual impairment in India: the Andhra Pradesh Eye Disease Study. British Journal of Ophthalmology. 86 (4), 373-377 (2002).
  2. Hartong, D. T., Berson, E. L., Dryja, T. P. Retinitis pigmentosa. Lancet. 368 (9549), 1795-1809 (2006).
  3. Sen, P., et al. Prevalence of retinitis pigmentosa in South Indian population aged above 40 years. Ophthalmic Epidemiology. 15 (4), 279-281 (2008).
  4. Nazimul, H., Rohit, K., Anjli, H. Trend of retinal diseases in developing countries. Expert Review of Ophthalmology. 3 (1), 43-50 (2008).
  5. . RetNet – Retinal Information Network Available from: https://sph.uth.edu/retnet/ (2022)
  6. Cicero, S. A., et al. Cells previously identified as retinal stem cells are pigmented ciliary epithelial cells. Proceedings of the National Academy of Sciences. 106 (16), 6685-6690 (2009).
  7. Guo, Y., et al. Modeling retinitis pigmentosa: retinal organoids generated from the iPSCs of a patient with the USH2A mutation show early developmental abnormalities. Frontiers in Cellular Neuroscience. 13, 361 (2019).
  8. Lane, A., et al. Modeling and rescue of RP2 Retinitis pigmentosa using iPSC-derived retinal organoids. Stem Cell Reports. 15 (1), 67-79 (2020).
  9. Li, Y. P., Deng, W. L., Jin, Z. B. Modeling retinitis pigmentosa through patient-derived retinal organoids. STAR Protocols. 2 (2), 100438 (2021).
  10. Gonzalez-Cordero, A., et al. Recapitulation of human retinal development from human pluripotent stem cells generates transplantable populations of cone photoreceptors. Stem Cell Reports. 9 (3), 820-837 (2017).
  11. Meyer, J. S., et al. Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells. 29 (8), 1206-1218 (2011).
  12. Zhu, J., Lamba, D. A. Small molecule-based retinal differentiation of human embryonic stem cells and induced pluripotent stem cells. Bio-Protocol. 8 (12), 2882 (2018).
  13. Nakano, T., et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell. 10 (6), 771-785 (2012).
  14. Reichman, S., et al. From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium. Proceedings of the National Academy of Sciences. 111 (23), 8518-8523 (2014).
  15. Zhong, X., et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nature Communications. 5, 4047 (2014).
  16. Wahlin, K. J., et al. Photoreceptor outer segment-like structures in long-term 3D retinas from human pluripotent stem cells. Scientific Reports. 7 (1), 766 (2017).
  17. Capowski, E. E., et al. Reproducibility and staging of 3D human retinal organoids across multiple pluripotent stem cell lines. Development. 146 (1), (2019).
  18. Chichagova, V., et al. Differentiation of retinal organoids from human pluripotent stem cells. Current Protocols in Stem Cell Biology. 50 (1), 95 (2019).
  19. Kelley, R. A., Chen, H. Y., Swaroop, A., Li, T. Accelerated development of rod photoreceptors in retinal organoids derived from human pluripotent stem cells by supplementation with 9-cis retinal. STAR Protocols. 1 (1), 100033 (2020).
  20. Zhou, S., et al. Differentiation of human embryonic stem cells into cone photoreceptors through simultaneous inhibition of BMP, TGFbeta and Wnt signaling. Development. 142 (19), 3294-3306 (2015).
  21. Chambers, S. M., et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature Biotechnology. 27 (3), 275-280 (2009).
  22. Mellough, C. B., et al. IGF-1 signaling plays an important role in the formation of three-dimensional laminated neural retina and other ocular structures from human embryonic stem cells. Stem Cells. 33 (8), 2416-2430 (2015).
  23. Susaimanickam, P. J., et al. Generating minicorneal organoids from human induced pluripotent stem cells. Development. 144 (13), 2338-2351 (2017).
check_url/pt/64509?article_type=t

Play Video

Citar este artigo
Mahato, S., Agrawal, T., Pidishetty, D., Maddileti, S., Pulimamidi, V. K., Mariappan, I. Generation of Retinal Organoids from Healthy and Retinal Disease-Specific Human-Induced Pluripotent Stem Cells. J. Vis. Exp. (190), e64509, doi:10.3791/64509 (2022).

View Video