This protocol describes an efficient method of differentiating hiPSCs into eye field clusters and generating neuro-retinal organoids using simplified culture conditions involving both adherent and suspension culture systems. Other ocular cell types, such as the RPE and corneal epithelium, can also be isolated from mature eye fields in retinal cultures.
Pluripotent stem cells can generate complex tissue organoids that are useful for in vitro disease modeling studies and for developing regenerative therapies. This protocol describes a simpler, robust, and stepwise method of generating retinal organoids in a hybrid culture system consisting of adherent monolayer cultures during the first 4 weeks of retinal differentiation till the emergence of distinct, self-organized eye field primordial clusters (EFPs). Further, the doughnut-shaped, circular, and translucent neuro-retinal islands within each EFP are manually picked and cultured under suspension using non-adherent culture dishes in a retinal differentiation medium for 1-2 weeks to generate multilayered 3D optic cups (OC-1M). These immature retinal organoids contain PAX6+ and ChX10+ proliferating, multipotent retinal precursors. The precursor cells are linearly self-assembled within the organoids and appear as distinct radial striations. At 4 weeks after suspension culture, the retinal progenitors undergo post-mitotic arrest and lineage differentiation to form mature retinal organoids (OC-2M). The photoreceptor lineage committed precursors develop within the outermost layers of retinal organoids. These CRX+ and RCVRN+ photoreceptor cells morphologically mature to display inner segment-like extensions. This method can be adopted for generating retinal organoids using human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs). All steps and procedures are clearly explained and demonstrated to ensure replicability and for wider applications in basic science and translational research.
The retina is a light-sensitive tissue present at the back of the vertebrate eye that converts light signals into nerve impulses by a biochemical phenomenon known as the photo-transduction pathway. The initial nerve impulses generated in the photoreceptor cells of the retina get transduced to other retinal interneurons and retinal ganglion cells (RGCs) and reach the visual cortex of the brain, which helps in image perception and visual response.
According to the World Health Organization (WHO), an estimated 1.5 million children are blind, of which 1 million are in Asia. Inherited Retinal Dystrophy (IRD) is a major blinding disease that affects 1 in 4,000 individuals worldwide1,2,3, while the prevalence of blindness associated with age-related macular degeneration (AMD) ranges from 0.6%-1.1% in developing countries4. IRDs are caused by inherited genetic defects in over 300 different genes involved in retinal development and function5. Such genetic changes result in the disruption of normal retinal functions and gradual degeneration of retinal cells, namely the photoreceptor cells and the retinal pigmented epithelium (RPE), thus leading to severe vision loss and blindness. Enormous progress has been made in other blinding conditions involving the cornea, lens, etc. However, retinal dystrophies and optic nerve atrophies do not have any proven therapy to date. Since an adult human retina does not have stem cells6, alternate sources such as embryonic stem cells (ESCs) and patient-derived induced pluripotent stem cells (iPSCs) can provide an unlimited supply of desired cell types and hold a great promise for developing complex tissue organoids required for in vitro disease modeling studies and for developing regenerative therapies7,8,9,10.
Several years of retinal research have led to a better understanding of molecular events that orchestrate early retinal development. Most protocols to generate retinal cells and 3D organoids from PSCs aim to recapitulate these developmental events in vitro, by culturing the cells in a complex cocktail of growth factors and small molecules to modulate the known biological processes in a stepwise manner. The retinal organoids thus generated are comprised of major retinal cells: retinal ganglion cells (RGCs), interneurons, photoreceptors, and retinal pigmented epithelium (RPE)11,12,13,14,15,16,17,18,19. Despite successful attempts at modeling IRDs using retinal organoids, the requirement for the complex cocktail of growth factors and small molecules during differentiation and the relatively low efficiency of retinal organoid generation poses a major challenge with most protocols. They majorly include the formation of embryoid bodies, followed by their stepwise differentiation into retinal lineages using complex culture conditions at different stages of in vitro development20,21,22.
Here, a simplified and robust method of developing complex 3D neuro-retinal organoids from healthy control and retinal disease-specific hiPSCs is reported. The protocol described here utilizes direct differentiation of near-confluent hiPSC cultures without needing embryoid body formation. Also, the complexity of culture medium is simplified, making it a cost-effective and reproducible technique that can be easily adopted by new researchers. It involves a hybrid culture system consisting of adherent monolayer cultures during the first 4 weeks of retinal differentiation till the emergence of distinct, self-organized eye field primordial clusters (EFPs). Further, the circular neuro-retinal islands within each EFP are manually picked and grown in suspension cultures for 1-2 weeks to prepare multilayered 3D retinal cups or organoids consisting of PAX6+ and CHX10+ proliferating neuro-retinal precursors. Extended culture of retinal organoids in 100 µM Taurine-containing medium for a further 4 weeks resulted in the emergence of RCVRN+ and CRX+ photoreceptor precursors and mature cells with rudimentary inner segment-like extensions.
All experiments involving hiPSCs were carried out aseptically, in adherence to the standard laboratory practices, ethical and biosafety guidelines, and with the approvals of regulatory bodies such as the Institutional Ethics Committee (IEC), Institutional Committee for Stem Cell Research (IC-SCR), and Institutional Bio-Safety Committee (IBSC).
1. Preparation of iPSC culture and retinal differentiation medium and reagents
2. Establishing human iPSC cultures
3. Differentiation of hiPSCs into eye fields and retinal lineage
NOTE: A schematic outline of the differentiation process is shown in Figure 1.
4. Harvesting of retinal organoids
5. Characterization of retinal organoids
Differentiation of hiPSCs into eye lineages is achieved by culturing the cells in different cocktails of culture medium containing supplements and growth factors in sequential steps at different time points, as described in Figure 1. The hiPSC cultures are maintained in Essential 8 medium, the pluripotent stem cell maintenance medium. Once they reach 70%-80% confluency (Figure 2A), the medium is replaced with Differentiation Induction Medium (DIM) on day 0 (refer to step 3.2) containing 1 ng/mL bFGF, 1 ng/mL Noggin, and 1% N2 supplement. Together with the neural-inducing N2 supplement, Noggin, the BMP signaling inhibitor, plays a crucial role in directing the cells toward neuroectodermal lineage by blocking mesodermal and endodermal commitment. On the 1st, 2nd, and 3rd day, the concentration of Noggin is increased to 10 ng/mL (refer to step 3.3 and 3.4). From the 4th day, the DIM is replaced with Retinal Differentiation Medium (RDM) (step 3.5), and the cultures are maintained continuously for up to 30 days. The B27 in the RDM cocktail contains additional supplements such as multiple antioxidants and D-Galactose, which promotes aerobic metabolism and helps in reducing oxidative stress, improving the viability of differentiating progenitor cells. In addition, the presence of retinol acetate (vitamin A) and growth hormones such as triiodo-I-thyronine (T3) promotes neural and retinal lineage differentiation.
On the 14th to 18th day, the formation of neural rosettes is observed, which marks the initiation of eye-field commitment (Figure 2B). The eye field precursors within the neural rosettes further proliferate and self-organize themselves into distinct eye field primordial clusters (EFPs) with circular neuro-retinal structures at the center. Other cell types such as the retinal pigmented epithelium (RPE), neural crest epithelium, and those that contribute to the ocular surface emerge and migrate out as contiguous epithelium with well-defined margins. Well-formed eye fields, as described above, can be observed between the 21st to 28th day of differentiation (Figure 2C,D). The central island of neuro-retinal cups are harvested between day 25-30 using a flame-pulled glass Pasteur pipette (Figure 2E) and are maintained as non-adherent suspension cultures in RDM for a further 1-2 weeks, until day 45. The proliferating retinal progenitors further self-organize themselves to form multilayered 3D retinal organoids of about 2-3 mm in diameter (Figure 2F,G). From day 46, the RDM is supplemented with 100 µM Taurine to promote neurogenesis and to improve cell survival in long-term organoid cultures in vitro (Figure 2H).
Retinal organoids are characterized at different stages of maturation for the expression of several retinal progenitor markers using reverse transcription PCR (RT-PCR) and immunohistochemistry (IHC). For this, the organoids are harvested for total RNA isolation on the 30th and 60th day of differentiation. RT-PCR results confirmed the induction and expression of neuro-retinal markers such as NEUROD1, ChX10, CRX, PKCß1, RLBP1, RHOK, OPN1SW, RCVRN, ABCA4, RD3, and PDE6C in 1-week-old retinal organoids (4-5 weeks after differentiation, OC-1M) and 4-week-old retinal organoids8,12 (7-8 weeks after differentiation, OC-2M) (Figure 3A). Immunohistochemistry and fluorescence imaging has confirmed the expression of early retinal progenitor markers PAX6, CHX10, and OTX2 in OC-1M and mature retinal markers RCVRN and CRX in OC-2M8,12 (Figure 3Bi,ii).
In addition to the central neuro-retinal cups, the other ocular cell types, such as the retinal pigmented epithelium (RPE), neural crest epithelium, and ocular surface epithelial cells, emerge and migrate out of the EFPs. The neuroectoderm-derived RPE progenitors appear as compactly arranged epithelial cells surrounding the EFPs, which gradually mature and get pigmented along the migratory margins from day 30-45 (Figure 4A–C). These adherent differentiation cultures, after the removal of retinal cups, can be therefore extended till day 45, to harvest proliferating RPE precursors (Figure 4D), which can be further enriched to prepare monolayer cultures of fully mature pigmented RPE cells. Mature pigmented RPE can be seen as monolayers with typical cobblestone morphology (Figure 4E). The RPE cell identity is further confirmed by immunocytochemistry using antibodies against RPE-specific markers such as MITF (RPE progenitor marker), PAX6 (progenitor and mature RPE marker), and RPE65 (mature RPE marker)10,12 (Figure 4F–H).
Pluripotent stem cell-derived retinal organoids can thus serve as in vitro models for studying various inherited retinal diseases7,8,9. Disease-specific stem cell models are developed either by generating patient-specific iPSC lines or by introducing disease-specific mutations in healthy control iPSC lines using the CRISPR-based gene editing approach7,8. The mutant iPSCs may or may not differentiate efficiently into retinal cell types depending on the gene mutations involved. While most healthy control cell lines followed the timeline described above, there can be deviations in the case of disease-specific iPSCs in terms of the differentiation timelines, EFP morphology, retinal cup size, lamination, and maturation. The retinal differentiation potential of an RB1-/- hiPSC line (LVIP15-RB1-CS3) that carries a biallelic deletion of 10 bp within the exon 18 of the human RB1 gene was examined, which results in a frameshift and complete loss of RB1 protein expression. It was observed that the loss of RB1 expression did not affect the eye and early retinal lineage differentiation of the mutant hiPSC line. However, a marked delay in timelines and a reduction in EFP forming efficiency were observed. The atypical EFPs that emerged had abnormal aggregates of retinal progenitors that failed to laminate and self-organize into proper retinal cups (Figure 5A,B) or lacked the surrounding zone of RPE and ocular surface epithelium (OSE) (Figure 5C). When picked and maintained as suspension cultures, these retinal progenitor clusters formed irregular neuro-retinal aggregates (Figure 5D).
Figure 1: Timeline representing the differentiation of iPSCs into retinal organoids. Please click here to view a larger version of this figure.
Figure 2: Self-organized 3D retinal organoid generation. (A) Growing hiPSCs cultures under feeder-free conditions. (B) Developing neuronal rosettes at day 14 of differentiation (asterisk). (C,D) Eye field primordial (EFP) clusters containing a central neuro-retinal cup-like structure (black arrows) surrounded by the migrating zone of the epithelium (white arrows) at day 21-28 of differentiation. (E) Flame-pulled glass Pasteur pipette with a hooked tip. The smooth curve at the hinge region is used for nudging and lifting the retinal cups (arrow). (F,G) Retinal cups harvested at day 25 and cultured under suspension to generate self-organized 3D retinal organoids. (H) Mature retinal organoids in suspension culture at day 45. Scale bars: 100 µm (A,B,D,G); 200 µm (C,F,H). Please click here to view a larger version of this figure.
Figure 3: Characterization of retinal organoids. (A) Retinal gene expression profiling by RT-PCR of the undifferentiated normal hiPSC line23 (hiPSC-F2-3F1) (F2-UD) and the differentiated normal optic cups picked at 3-4 weeks of differentiation and matured further in suspension culture for 1 week (OC-1M) and 4 weeks (OC-2M) respectively. The cDNAs of all test samples were normalized using eEF1a as the loading control. (B) Confocal images of immunolabelled sections of (i) immature retinal organoids (OC-1M) using antibodies against the neuro-retinal progenitor markers CHX10, PAX6, and OTX2 (in red) and (ii) mature retinal organoids (OC-2M) using antibodies against the photoreceptor precursor markers Recoverin, and CRX (in red). The marked outermost layer of the retinal organoids with differentiating photoreceptor cells (box) in the left panels are zoomed and shown in the right panels. DAPI was used as a counterstain (in blue). The rudimentary inner segment-like extensions are marked by white arrows. Scale bar: 20 µm. Please click here to view a larger version of this figure.
Figure 4: Emergence of different ocular cell types. (A) EFP clusters with the neuro-retinal cup at the center and migrating RPE outgrowths showing pigmentation along the leading edges (white arrow). (B) Well-differentiated pigmented epithelial outgrowths from multiple EFPs all around the neuro-retinal island. (C) Higher magnification of an EFP shows the migratory zone of RPE progenitors (white arrow) and ocular surface epithelium (asterisk) surrounding a neuro-retinal cup. (D) Extended adherent cultures that developed monolayers of immature RPE cells containing both pigmented and non-pigmented cells. (E) Monolayer cultures of fully mature and pigmented RPE cells showing cobblestone morphology at day 60. (F–H) RPE cells expressing PAX6, MITF, and RPE65 in green. Scale bar: 200 µm (A,B); 100 µm (C–E); 20 µm (F–H). Please click here to view a larger version of this figure.
Figure 5: Abnormal retinal cup formation in RB1-/- mutant iPSCs. (A,B) EFPs with abnormal aggregates of retinal progenitors with distorted lamination and lack of striations. (C) EFP with the miniature neuro-retinal cup but lacking the surrounding zone of RPE and ocular surface epithelium (arrow). (D) Irregular neuro-retinal aggregates formed in suspension culture. Scale bar: 100 µm. Please click here to view a larger version of this figure.
Primer name | Prime sequence (5'-3') | Band size (bp) | Ref Id | |||
1 | heEF1α | F: GAAGTCTGGTGATGCTGCCATTGT | 198 | NM_001402 | ||
R: TTCTGAGCTTTCTGGGCAGACTTG | ||||||
2 | hNeuroD1 | F: CGCGCTTAGCATCACTAACT | 349 | NM_002500 | ||
R: GCGTCTCTTGGGCTTTTGAT | ||||||
3 | hCHX10 | F: CAAGTCAGCCAAGGATGGCA | 382 | NM_182894 | ||
R: CTTGACCTAAGCCATGTCCT | ||||||
4 | hCRX | F: TCAACGCCTTGGCCCTAAGT | 357 | NM_000554 | ||
R: ACACATCTGTGGAGGGTCTT | ||||||
5 | hPKC-β1 | F: AAAGGCAGCTTTGGCAAGGT | 376 | NM_212535 | ||
R: CGAGCATCACGTTGTCAAGT | ||||||
6 | RLBP1 | F: TGCACCATTGAAGCTGGCTA | 361 | NM_000326 | ||
R: AGAAGGGCTTGACCACATTG | ||||||
7 | RHOK | F: CAAGCTGTATGCCTGCAAGA | 360 | NM_002929 | ||
R: ATCCGGACATTGCCGTCATT | ||||||
8 | hOPN1SW | F: TGCTTCATTGTGCCTCTCTC | 373 | NM_001708 | ||
R: AGCTGCATGTGTCGGATTCA | ||||||
9 | RCVRN | F: AGACCAACCAGAAGCTGGAGT | 367 | NM_002903 | ||
R: ACGGGTGTCATGTGAGTGGTA | ||||||
10 | hABCA4 | F: CACCGTAGCAGGCAAGAGTATT | 271 | NG_009073 | ||
R: AATGAGTGCGATGGCTGTGGAGA | ||||||
11 | hRD3 | F: ATGGTGCTGGAGACGCTTAT | 328 | NM_183059 | ||
R: CTTCCTGCTTCATCCTCTCCA | ||||||
12 | hPDE6C | F: GTTGATGCCTGTGAACAAATGC | 351 | NM_006204 | ||
R: ACCACTCAGCATAGGTGTGAT |
Table 1: List of gene-specific primers for RT-PCR.
Components for RNA-Primer mix | Volume (in µL) |
RNA (1-2 µg) | n |
10 mM dNTP | 1 |
10 mM Oligo dT | 1 |
DEPC-treated water | upto 10 |
Total Reaction Volume | 10 |
Table 2: RNA-primer master mix for cDNA conversion.
Components for Mastermix 2 | Volume (in µL) |
10x RT Buffer | 2 |
25 mM MgCl2 | 4 |
0.1 M DTT | 2 |
SuperScript III Reverse Transcriptase | 1 |
RNaseOUT | 1 |
Total Reaction Volume | 10 |
Table 3: Master mix 2 for cDNA conversion.
Components of PCR | Volume (in µL)/reaction |
10x PCR Buffer | 2 |
2 mM dNTP | 2 |
Forward primer (5 µM) | 1 |
Reverse primer (5 µM) | 1 |
Taq Polymerase | 0.2 |
cDNA Template (50-100 ng) | 1 |
Sterile Milli-Q water | 12.8 |
Total Reaction Volume | 20 |
Table 4: Master mix for semi-quantitative PCR.
Temperature | Time | No. of cycles | |
Denaturation | 95 °C | 5 min | x 1 |
Denaturation | 95 °C | 30 s | x 35 |
Annealing | 50-60 °C | 30 s | |
Extension | 72 °C | 30 s | |
Final Extension | 72 °C | 10 min | x 1 |
Table 5: PCR amplification conditions.
hiPSCs are a powerful tool to study organ and tissue development in vitro. Recapitulating the disease phenotype by differentiating healthy versus disease-specific hiPSCs toward the retinal lineage can help in gaining newer insights into the pathophysiology of different forms of inherited retinal dystrophies. Several protocols have been described and adopted for the in vitro differentiation of PSCs into retinal cell types. Most of them involve the use of culture medium containing complex cocktails of recombinant growth factors, supplements, small molecules, and reagents, such as: N1, N2, and B27 supplements; BMP and TGFβ signaling blockers like Noggin, SB431542, LDN193189, and Follistatin, or inducers such as Activin A, Lefty, and IDE1; canonical Wnt signaling blockers such as DKK1, SFRP, IWP-2, and IWR-1-endo, or inducers such as CHIR99021, SB216763, and CKI-7; FGF receptor signaling blockers such as PD0325901 and PD173074 or inducers like bFGF; notch signaling inhibitors such as DAPT; other signaling molecules such as insulin-like growth factor (IGF-1); retinoic acid; growth hormones such as Triiodothyronine (T3) and Hydrocortisone; and anti-oxidants and other pro-survival factors such as Ascorbic acid, Nicotinamide, Taurine, Docosahexaenoic acid, 1-Thioglycerol, etc. These components are included in the culture medium at different stages of stem cell differentiation to stimulate or modulate various signaling cascades to induce eye and retinal lineage commitment11,12,13,14,15,16,17,18,19,20,21,22.
Here, a simpler, robust, and efficient method of generating retinal organoids directly from near-confluent, adherent cultures of hiPSCs is described. The simplified protocol involves using fewer supplements, growth factors, and small molecules that primarily trigger the initial differentiation of PSCs into the neuroectodermal lineage. Subsequent differentiation steps rely on the inherent ability of PSCs to synchronously differentiate into the cell type of related lineages, which then self-organize and mutually regulate the development and spatial organization of multiple cell types that contribute to the formation of complex tissues. The gradual withdrawal of bFGF and the addition of Noggin help in the successful induction of early neuro-ectodermal fate commitment within 3 days of differentiation. Continued maintenance of differentiation cultures in neural-inducing RDM, without adding any growth factors or small molecules, result in the induction of eye field primordial (EFP) structures with clear margins, within 3-4 weeks of differentiation. The EFPs contain multipotent progenitor cells, which upon undisturbed and continued maintenance, result in multi-lineage differentiation and self-assembly to form complex EFPs consisting of centrally positioned neuro-retinal cups or optic cups (OCs), surrounded by other related ocular cell types such as the retinal pigmented epithelium (RPE), neural crest epithelium, and ocular surface epithelium. Alternately, the PSCs can be grown as suspension cultures from day 1-3 to form EBs under identical culture conditions. The EBs can be further plated on day 4 and grown as adherent cultures on matrix-coated surfaces in RDM to initiate retinal lineage differentiation, as described above. Healthy differentiating cultures routinely give rise to about 20-30 EFPs per well of a 6-well plate. The OCs can be harvested from the EFPs at 3-4 weeks of retinal differentiation and are maintained in suspension cultures for a further 30-60 days, to enable the differentiation of neuro-retinal progenitors and to generate mature retinal organoids. After 4 weeks of suspension culture, about 70%-80% of the optic cups picked from EFPs remain intact, retain their lamination, and develop into mature retinal organoids (OC-2M), with RCVRN+ and CRX+ committed photoreceptor cells and inner segment-like extensions within the outermost layers.
The confluency of growing iPSC cultures is critical at the time of initiation of differentiation and shifting the cultures to DIM. Cultures with smaller colonies and confluence below 60%, and those that are precociously differentiating, result in significantly reduced EFP numbers. When the eye field clusters emerge, the central island of neuro-retinal cups should be harvested within 1 week. This can be done by gently nudging and lifting the intact cups using the angle or the curved region of the flame-pulled glass capillary tip, as described in the protocol section. Care must be taken not to damage the cups. Further delays in picking would result in flattening and a loss of 3D organization due to the proliferation and migration of neuro-retinal progenitor cells, which makes harvesting difficult and results in atypical retinal organoids.
The efficiency of eye field induction and maturation of retinal cups varies between different disease or patient-specific hiPSC lines, depending on the underlying genetic defects. For example, the retinal lineage commitment and EFP forming efficiencies of a RP disease-specific line was identical to that of the healthy control cells, whereas an RB1 null line failed to form EFPs (data not shown). Some lines carrying mutations linked to Leber Congenital Amaurosis formed atypical EFPs with defects in their size, self-assembly, lamination, and maturation of retinal progenitors (data not shown). Further molecular validations and gene expression profiling of patient-specific retinal organoids compared to healthy control tissues would be necessary to understand the pathophysiology of a disease condition. Considering the variability in patient genomes and the involvement of multi-gene networks in disease manifestations, it may also be important to study retinal organoids derived from isogenic iPSC lines to establish an absolute genotype-phenotype correlation in disease modeling studies. Such isogenic lines can be created either by targeted gene knockouts in healthy control lines or by correcting the pathogenic mutations in patient-specific iPSCs, using advanced genome editing techniques8,9.
Such intact retinal organoids derived from normal or disease-specific iPSC lines can be used in novel drug screening and testing. Photoreceptor precursors within the retinal organoids and other ocular cell types, such as the RPE and corneal epithelium within the EFP outgrowths, can be further isolated and enriched for their applications in basic research and regenerative medicine. The protocol described here can be easily adopted to GMP-compliant processes for preparing clinical grade cells meant for preclinical and clinical trial evaluations.
The authors have nothing to disclose.
The authors acknowledge the scientific and technical support from Dr. Chitra Kannabiran, Geneticist; Dr. Subhadra Jalali, Retinal Consultant; Dr. Milind Naik, Oculoplastic Surgeon; and Dr. Swathi Kaliki, Ocular Oncologist at the LV Prasad Eye Institute, Hyderabad toward the generation of normal and patient-specific iPSC lines. The authors acknowledge the R&D grants from the Science and Engineering Research Board, Department of Science and Technology (IM), (SB/SO/HS/177/2013), Department of Biotechnology (IM), (BT/PR32404/MED/30/2136/2019) ,and Senior Research Fellowships from ICMR (S.M., D.P.), UGC (T.A.), and CSIR (V.K.P.), Government of India.
0.22 µm Syringe filters | TPP | 99722 | |
15 mL centrifuge tube | TPP | 91015 | |
50 mL centrifuge tube | TPP | 91050 | |
6 well plates | TPP | 92006 | |
Anti-Chx10 Antibody; Mouse monoclonal | Santa Cruz | SC365519 | 1:50 dilution |
Anti-CRX antibody; Rabbit monoclonal | Abcam | ab140603 | 1:300 dilution |
Anti-MiTF antibody, Mouse monoclonal | Abcam | ab3201 | 1:250 dilution |
Anti-Recoverin Antibody; Rabbit polyclonal | Millipore | AB5585 | 1:300 dilution |
B-27 Supplement (50x), serum free | Thermo Fisher | 17504044 | |
Basic Fibroblast growth factor (bFGF) | Sigma Aldrich | F0291 | |
Centrifuge 5810R | Eppendorf | ||
Coplin Jar (50 mL) | Tarson | ||
Corning Matrigel hESC-Qualified Matrix | Corning | 354277 | |
CryoTubes | Thermo Fisher | V7884 | |
DMEM/F-12, GlutaMAX supplement (basal medium) | Thermo Fisher | 10565-018 | |
DreamTaq DNA polymerase | Thermo Fisher | EP0709 | |
Dulbeco’s Phosphate Buffered Saline | Thermo Fisher | 14190144 | |
Essential 8 medium kit | Thermo Fisher | A1517001 | |
Ethylene diamine tetraaceticacid disodium salt dihydrate (EDTA) | Sigma Aldrich | E5134 | |
Falcon Not TC-treated Treated Petri Dish, 60 mm | Corning | 351007 | |
Fetal Bovine Serum, qualified, United States | Gibco | 26140079 | |
GelDocXR+ with Image lab software | BIO-RAD | Agarose Gel documentation system | |
GlutaMAX Supplement | Thermo Fisher | 35050061 | |
Goat anti-Mouse IgG (H+L), Alexa Fluor 488 | Invitrogen | A11001 | 1:300 dilution |
Goat anti-Mouse IgG (H+L), Alexa Fluor 546 | Invitrogen | A11030 | 1:300 dilution |
Goat anti-Rabbit IgG (H+L), Alexa Fluo 546 | Invitrogen | A11035 | 1:300 dilution |
Goat anti-Rabbit- IgG (H+L), Alexa Fluor 488 | Invitrogen | A11008 | 1:300 dilution |
HistoCore MULTICUT | Leica | For sectioning | |
KnockOut Serum Replacement | Thermo Fisher | 10828028 | |
L-Acsorbic acid | Sigma Aldrich | A92902 | |
MEM Non-Essential Amino Acids Solution (100x) | Thermo Fisher | 11140-050 | |
N2 supplement (100x) | Thermo Fisher | 17502048 | |
NanoDrop 2000 | Thermo Fisher | To quantify RNA | |
Paraformaldehyde | Qualigens | 23995 | |
Pasteur Pipets, 9 inch, Non-Sterile, Unplugged | Corning | 7095D-9 | |
Penicillin-Streptomycin | Thermo Fisher | 15140-122 | |
Recombinant Anti-Otx2 antibody , Rabbit monoclonal | Abcam | ab183951 | 1:300 dilution |
Recombinant Anti-PAX6 antibody; Rabbit Monoclonal | Abcam | ab195045 | 1:300 dilution |
Recombinant Anti-RPE65 antibody, Rabbit Monoclonal | Abcam | ab231782 | 1:300 dilution |
Recombinant Human Noggin Protein | R&D Systems | 6057-NG | |
SeaKem LE Agarose | Lonza | 50004 | |
Serological pipettes 10 mL | TPP | 94010 | |
Serological pipettes 5 mL | TPP | 94005 | |
Sodium Chloride | Sigma Aldrich | S7653 | |
Sodium Citrate Tribasic dihydrate | Sigma Aldrich | S4641 | |
Starfrost (silane coated) microscopic slides | Knittel | ||
SuperScript III First-Strand Synthesis System | Thermo Fisher | 18080051 | |
SuperScript III First-Strand Synthesis System for RT-PCR | Invitrogen | 18080051 | |
Triton X-100 | Sigma Aldrich | T8787 | |
TRIzol Reagent | Invitrogen | 15596026 | |
UltraPure 0.5 M EDTA, pH 8.0 | Thermo Fisher | 15575020 | |
VECTASHIELD Antifade Mounting Medium with DAPI | Vector laboratories | H-1200 | |
Vitronectin | Thermo Fisher | A27940 | |
Y-27632 dihydrochloride (Rho-kinase inhibitor) | Sigma Aldrich | Y0503 | |
Zeiss LSM 880 | Zeiss | Confocal microscope |