Summary

流式细胞术从小鼠组织中鉴定和分离爆破形成单元和集落形成单元红系祖细胞

Published: November 04, 2022
doi:

Summary

在这里,我们描述了一种新的流式细胞术方法,用于直接从新鲜小鼠骨髓和脾脏中前瞻性分离早期爆发形成单位红系(BFU-e)和集落形成单位红系(CFU-e)祖细胞。该协议基于单细胞转录组学数据开发,是第一个以高纯度分离所有组织红系祖细胞的方案。

Abstract

早期的红系祖细胞最初由其在体外的集落形成潜力定义,并分为爆发形成和集落形成“单位”,称为BFU-e和CFU-e。直到最近,还没有从新鲜分离的成年小鼠骨髓中直接前瞻性和完全分离纯BFU-e和CFU-e祖细胞的方法。为了解决这一差距,分析了小鼠骨髓的单细胞RNA-seq(scRNAseq)数据集,以表达编码细胞表面标志物的基因。该分析与细胞命运测定相结合,允许开发一种新的流式细胞术方法,该方法可鉴定并允许分离小鼠骨髓或脾脏中BFU-e和CFU-e祖细胞的完整和纯亚群。这种方法还可以识别其他祖细胞亚群,包括富集碱性粒细胞/肥大细胞和巨核细胞潜力的亚群。该方法包括用针对Kit和CD55的抗体标记新鲜骨髓或脾脏细胞。然后,表达这两种标记的祖细胞细分为五个主要群体。群体 1(P1 或 CFU-e,Kit+ CD55+ CD49f 中/低 CD105 中/高 CD71 中/高)包含所有 CFU-e 祖细胞,可进一步细分为 P1-低(CD71 med CD150)和 P1-hi(CD71CD150),分别对应于早期和晚期 CFU-e; 群体 2(P2 或 BFU-e,Kit+ CD55+ CD49f 中/低 CD105 中/高 CD71CD150)包含所有 BFU-e 祖细胞;群体 P3(P3、试剂盒+ CD55+ CD49f 中/高 CD105中/低 CD150 低 CD41)富集用于嗜碱性粒细胞/肥大细胞祖细胞;群体 4(P4,Kit+ CD55+ CD49f 中/高 CD105中/低 CD150CD41+)富集巨核细胞祖细胞;和群体 5(P5、Kit+ CD55+ CD49f 中/高 CD105 中/CD150CD41)包含具有红细胞、嗜碱性粒细胞/肥大细胞和巨核细胞潜力 (EBMP) 和红细胞/巨核细胞/嗜碱性粒细胞偏向的多电位祖细胞 (MPP) 的祖细胞。这种新方法在分析红系和其他造血祖细胞时可以提高精度,并且还可以参考每个流式细胞术定义的群体的转录组信息。

Introduction

红细胞生成可分为两个主要阶段:早期红细胞生成和红系末端分化(1)123。在早期红细胞生成中,造血干细胞致力于红系并产生早期红系祖细胞,这些祖细胞在 1970 年代首次根据其在半固体培养基中的集落形成潜力被鉴定456789.从广义上讲,红系祖细胞分为两类:早期祖细胞,每个祖细胞产生“爆发”(较小红细胞簇的大集合),称为“爆发形成单位红细胞”或BFU-e456;和它们的后代,每个形成一个单一的小红细胞簇或集落,称为“集落形成单位红细胞”或CFU-e789。BFU-e和CFU-e尚未表达终末红系基因,并且在形态上不可识别。经过多次自我更新或扩增细胞分裂后,CFU-e经历转录开关,其中诱导珠蛋白等红系基因,从而转变为红系末端分化(ETD)110。在ETD期间,成红细胞在剜除形成网织红细胞之前经历三到五次成熟细胞分裂,网织红细胞成熟为红细胞。

终末分化期间的成红细胞最初根据其形态分为原成红细胞、嗜碱性、多色和正色。流式细胞术的出现允许基于细胞大小(通过前向散射,FSC测量)和两个细胞表面标记CD71和Ter119 11,1213进行前瞻性分选和分离(图1)。这种和类似的流式细胞术方法14彻底改变了ETD分子和细胞方面的研究,允许在体内体外对成红细胞进行发育阶段特异性分析10,151617,181920CD71/Ter119方法现在常规用于红系前体的分析。

直到最近,研究人员还缺乏一种类似的、可访问的流式细胞术方法,用于从小鼠组织中直接、高纯度地前瞻性分离CFU-e和BFU-e。相反,研究人员使用了流式细胞术策略,仅分离出这些祖细胞的一小部分,通常是在存在在同一流式细胞术亚群中共同纯化的非红系细胞的情况下21。因此,BFU-e和CFU-e的研究仅限于体外分化系统,这些系统从早期骨髓祖细胞衍生和扩增BFU-e和CFU-e。然后可以在这些富含红系祖细胞的培养物中应用流式细胞术策略来区分CFU-e和BFU-e2223。另一种方法是利用胎儿CFU-e和BFU-e,它们在妊娠中期小鼠胎儿肝脏的Ter119阴性部分中高度富集102425。然而,这两种方法都不允许研究体内生理状态下的成年BFU-e和CFU-e。当回想一下,基于集落形成测定,这些细胞分别以0.025%和0.3%的频率存在于成人骨髓中时,可以理解挑战的严重性6。

这里描述的方案是一种新颖的流式细胞术方法,基于新鲜收获的Kit+小鼠骨髓细胞的单细胞转录组学分析(Kit由骨髓的所有早期祖细胞群表达)1。我们的方法包含一些已被Pronk等人使用的细胞表面标记物2126。单细胞转录组用于确定识别红系和其他早期造血祖细胞的细胞表面标志物的组合(图2)。具体而言,谱系阴性(Lin)Kit+细胞的CD55+部分可以细分为五个群体,其中三个产生红系轨迹的连续片段(图2)。通过分选确认这些群体中每个群体的转录组身份,然后进行scRNAseq并将分选的单细胞转录组投影回原始转录组图谱(五个群体中每个群体和整个骨髓数据集的基因表达可以在 https://kleintools.hms.harvard.edu/paper_websites/tusi_et_al/index.html 中探索)1.使用传统的集落形成测定(图2)以及新颖的高通量单细胞命运测定127确认了每个群体的细胞命运潜力。这些分析表明,新型流式细胞术方法可高纯度分离新鲜成人骨髓和脾脏的所有BFU-e和CFU-e祖细胞。具体而言,群体 1 (P1) 仅包含 CFU-e 而不包含其他造血祖细胞,群体 2 (P2) 包含骨髓的所有 BFU-e 祖细胞和少量 CFU-e,但没有其他祖细胞1。下面的详细方案通过注射盐水或促红细胞生成激素促红细胞生成素(Epo)的小鼠的示例实验进一步说明。

Protocol

所有实验均按照动物协议A-1586进行,并202200017马萨诸塞大学陈医学院机构动物护理和使用委员会批准。 注意:此处详细介绍了两种方案:首先,流式细胞术分析(第1节),然后是流式细胞术分选的方案调整(第2节)。以下方案使用具有10个通道的流式细胞仪/分选仪。 表 1 中提供了一个示例设置,如步骤 1.14.5 中所述。也可以仅使用九个通道运行此协议;请参阅 <s…

Representative Results

该协议描述了一种流式细胞术方法,用于鉴定新鲜收获的骨髓和脾脏细胞中的BFU-es和CFU-es。它首先从小鼠身上收获新鲜的BM和脾脏,并立即将组织放在冰上。所有程序均在低温下进行,以保持细胞活力。用“谱系”抗体混合物标记细胞,该混合物允许排除所有表达分化血系标志物的细胞(FITC-Lin鸡尾酒,表 3,在流式细胞术分析的情况下;或磁珠富集, 表4,用于谱系阴性细…

Discussion

直接从高纯度新鲜组织中前瞻性分离BFU-e和CFU-e祖细胞的能力以前是研究人员所没有的。我们的新方法使用scRNAseq和细胞命运测定127进行了验证现在提供了实现这一目标的工具。

成功执行排序和分析方案有许多关键点。首先,细胞需要以900 x g 的速度旋转,以防止低密度细胞的损失。CFU-e阶段的许多细胞是大的低密度细胞?…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作得到了NIH拨款R01DK130498,R01DK120639和R01HL141402的支持。

Materials

0.5 M EDTA, pH 8.0 Life Technologies 15575020
1000 µL large orifice tips USA sceintific 1011-9000
Alexa Fluor 647 anti-mouse CD55 (DAF) Antibody BioLegend 131806
APC/Cyanine7 anti-mouse CD117 (c-kit) Antibody BioLegend 105826
Biotin-CD11b BD Biosciences 557395 M1/70 (clone)
Biotin-CD19 BD Biosciences 553784 1D3 (clone)
Biotin-CD4 BD Biosciences BDB553045 RM4-5 (clone)
Biotin-CD8a BD Biosciences BDB553029 53-6.7 (clone)
Biotin-F4/80 Biolegend 123106 BM8 (clone)
Biotin-Ly-6G and Ly-6C BD Biosciences 553125 RB6-8C5 (clone)
Biotin-TER-119 BD Biosciences 553672 TER-119 (clone)
Bovine Serum Albumin Sigma aldritch A1470
Brilliant Violet 421 anti-human/mouse CD49f Antibody BioLegend 313624
Brilliant Violet 605 anti-mouse CD41 Antibody BioLegend 133921
Brilliant Violet 650 anti-mouse CD150 (SLAM) Antibody BioLegend 115931
BUV395 Rat Anti-Mouse TER-119/Erythroid Cells BD Biosciences 563827
ChromPure Rabbit IgG, whole molecule Jackson ImmunoResearch Laboratories 011-000-003
DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride) Life Technologies D1306
Digital DIVA hardware and software for LSR II BD Biosciences
FITC anti-mouse F4/80 Antibody BioLegend 123108
FITC Rat Anti-CD11b BD Biosciences 557396
FITC Rat Anti-Mouse CD19 BD Biosciences 553785
FITC Rat Anti-Mouse CD4 BD Biosciences 553047
FITC Rat Anti-Mouse CD8a BD Biosciences 553031
FITC Rat Anti-Mouse Ly-6G and LY-6C BD Biosciences 553127
FlowJo software  FlowJo version 10 Flow cytometer analysis software
LSR II digital multiparameter flow cytometer analyzer BD Biosciences Flow cytometer 
NewlineNY Stainless Steel Hand Masher & Bowl, Mortar and Pestle Set Amazon
Normal rat serum Stem Cell Technologies 13551
PE anti-mouse CD105 Antibody BioLegend 120408
PE/Cyanine7 anti-mouse CD71 Antibody BioLegend 113812
Phosphate Buffered Saline, 10x Solution Fisher scientific BP3994
Streptavidin Nanobeads BioLegend 480016 Magnetic beads

Referências

  1. Tusi, B. K., et al. Population snapshots predict early haematopoietic and erythroid hierarchies. Nature. 555 (7694), 54-60 (2018).
  2. Socolovsky, M. The role of specialized cell cycles during erythroid lineage development: Insights from single-cell RNA sequencing. International Journal of Hematology. 116 (2), 163-173 (2022).
  3. Hwang, Y., Hidalgo, D., Socolovsky, M. The shifting shape and functional specializations of the cell cycle during lineage development. WIREs Mechanisms of Disease. 13 (2), 1504 (2021).
  4. Axelrad, A. A., McLeod, D. L., Shreeve, M. M., Heath, D. S., Robinson, W. A. Properties of Cells that Produce Erythrocytic Colonies In Vitro. Hemopoiesis in Culture. , (1974).
  5. Heath, D. S., Axelrad, A. A., McLeod, D. L., Shreeve, M. M. Separation of the erythropoietin-responsive progenitors BFU-E and CFU-E in mouse bone marrow by unit gravity sedimentation. Blood. 47 (5), 777-792 (1976).
  6. Iscove, N. N., Sieber, F. Erythroid progenitors in mouse bone marrow detected by macroscopic colony formation in culture. Experimental Hematology. 3 (1), 32-43 (1975).
  7. Gregory, C. J., McCulloch, E. A., Till, J. E. Erythropoietic progenitors capable of colony formation in culture: State of differentiation. Journal of Cell Physiology. 81 (3), 411-420 (1973).
  8. Gregory, C. J., Tepperman, A. D., McCulloch, E. A., Till, J. E. Erythropoietic progenitors capable of colony formation in culture: Response of normal and genetically anemic W-W-V mice to manipulations of the erythron. Journal of Cell Physiology. 84 (1), 1-12 (1974).
  9. Gregory, C. J. Erythropoietin sensitivity as a differentiation marker in the hemopoietic system: studies of three erythropoietic colony responses in culture. Journal of Cell Physiology. 89 (2), 289-301 (1976).
  10. Pop, R., et al. A key commitment step in erythropoiesis is synchronized with the cell cycle clock through mutual inhibition between PU.1 and S-phase progression. PLoS Biology. 8 (9), 1000484 (2010).
  11. Koulnis, M., et al. Identification and analysis of mouse erythroid progenitors using the CD71/TER119 flow-cytometric assay. Journal of Visualized Experiments. (54), e2809 (2011).
  12. Liu, Y., et al. Suppression of Fas-FasL coexpression by erythropoietin mediates erythroblast expansion during the erythropoietic stress response in vivo. Blood. 108 (1), 123-133 (2006).
  13. Socolovsky, M., et al. Ineffective erythropoiesis in Stat5a(-/-)5b(-/-) mice due to decreased survival of early erythroblasts. Blood. 98 (12), 3261-3273 (2001).
  14. Chen, K., et al. Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis. Proceedings of the National Academy of Sciences of the United States of America. 106 (41), 17413-17418 (2009).
  15. Hwang, Y., Hidalgo, D., Socolovsky, M. The shifting shape and functional specializations of the cell cycle during lineage development. WIREs Mechanisms of Disease. 13 (2), 1504 (2020).
  16. Hidalgo, D., et al. EpoR stimulates rapid cycling and larger red cells during mouse and human erythropoiesis. Nature Communications. 12 (1), 7334 (2021).
  17. Porpiglia, E., Hidalgo, D., Koulnis, M., Tzafriri, A. R., Socolovsky, M. Stat5 signaling specifies basal versus stress erythropoietic responses through distinct binary and graded dynamic modalities. PLoS Biology. 10 (8), 1001383 (2012).
  18. Koulnis, M., et al. Contrasting dynamic responses in vivo of the Bcl-xL and Bim erythropoietic survival pathways. Blood. 119 (5), 1228-1239 (2012).
  19. Shearstone, J. R., et al. Global DNA demethylation during mouse erythropoiesis in vivo. Science. 334 (6057), 799-802 (2011).
  20. Koulnis, M., Liu, Y., Hallstrom, K., Socolovsky, M. Negative autoregulation by Fas stabilizes adult erythropoiesis and accelerates its stress response. PLoS One. 6 (7), 21192 (2011).
  21. Pronk, C. J., et al. Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy. Cell Stem Cell. 1 (4), 428-442 (2007).
  22. Dolznig, H., et al. Expansion and differentiation of immature mouse and human hematopoietic progenitors. Methods in Molecular Medicine. 105, 323-344 (2005).
  23. Li, J., et al. Isolation and transcriptome analyses of human erythroid progenitors: BFU-E and CFU-E. Blood. 124 (24), 3636-3645 (2014).
  24. Zhang, J., Socolovsky, M., Gross, A. W., Lodish, H. F. Role of Ras signaling in erythroid differentiation of mouse fetal liver cells: Functional analysis by a flow cytometry-based novel culture system. Blood. 102 (12), 3938-3946 (2003).
  25. Flygare, J., Rayon Estrada, V., Shin, C., Gupta, S., Lodish, H. F. HIF1alpha synergizes with glucocorticoids to promote BFU-E progenitor self-renewal. Blood. 117 (12), 3435-3444 (2011).
  26. Pronk, C. J., Attema, J., Rossi, D. J., Sigvardsson, M., Bryder, D. Deciphering developmental stages of adult myelopoiesis. Cell Cycle. 7 (6), 706-713 (2008).
  27. Khoramian Tusi, B., Socolovsky, M. High-throughput single-cell fate potential assay of murine hematopoietic progenitors in vitro. Experimental Hematology. 60, 21-29 (2018).
  28. Erslev, A. J., Caro, J. Erythropoietin titers in response to anemia or hypoxia. Blood Cells. 13 (1-2), 207-216 (1987).
  29. Koury, M. J., Bondurant, M. C. The molecular mechanism of erythropoietin action. European Journal of Biochemistry. 210 (3), 649-663 (1992).
check_url/pt/64373?article_type=t

Play Video

Citar este artigo
Swaminathan, A., Hwang, Y., Winward, A., Socolovsky, M. Identification and Isolation of Burst-Forming Unit and Colony-Forming Unit Erythroid Progenitors from Mouse Tissue by Flow Cytometry. J. Vis. Exp. (189), e64373, doi:10.3791/64373 (2022).

View Video