Summary

红壤资源化循环利用合成Fe2O3/FAU型重金属去除用分子筛复合材料

Published: June 02, 2022
doi:

Summary

本文提出了一种以红壤为原料合成Fe2O3/鞘铁矿(FAU)型分子筛复合材料的新颖便捷途径。详细的合成参数经过微调。所得复合材料可用于重金属污染水体的高效修复,表明其在环境工程中的潜在应用前景。

Abstract

重金属污染的水事关人类健康和生态环境。在这种情况下,由高效吸附材料实现 的原位 水修复技术非常重要。在用于水修复的所有材料中,铁基纳米材料和多孔材料因其丰富的氧化还原反应性和吸附功能而备受关注。在这里,我们开发了一种简单的方案,将华南广泛分布的红壤直接转化为制造Fe2O3/faujasite(FAU)型沸石复合材料。

详细的合成过程和合成参数,如反应温度、反应时间、原料中的Si/Al比等,都经过精心调整。合成的复合材料对典型的重金属(loid)离子具有良好的吸附能力。将0.001 g/mL Fe2O3/FAU型分子筛复合材料加入不同重金属污染的水溶液中(单一重金属浓度:1,000 mg/L [ppm]),对Cu(II)、Cr(III)、Cr(VI)的吸附容量分别为172、45、170、40、429、693、94和133 mg/g, As(III)、Cd(II)、Pb(II)、Zn(II)和Ni(II)的去除量,可进一步扩大用于重金属污染的水土修复。

Introduction

来自人为和自然活动的重金属在空气、水和土壤环境中无处不在1.它们具有很高的流动性和毒性,通过直接接触或通过食物链运输对人类构成潜在的健康风险2。水对人类的生命至关重要,因为它是每个家庭的原料。恢复水健康至关重要。因此,降低水中有毒重金属(loid)的迁移率和生物利用度具有重要意义。为了保持水中的良好健康,水修复材料,如生物炭、铁基材料和沸石,在固定或去除水环境中的重金属(loid)方面起着至关重要的作用345

沸石是高度结晶的材料,其晶体结构具有独特的孔隙和通道。它们由TO4 四面体(T是中心原子,通常是Si,Al或P)组成,由共享的O原子连接。孔隙中的负表面电荷和可交换离子使其成为离子捕获的常用吸附剂,已广泛用于重金属污染的水土修复。得益于其结构,沸石去除污染物的修复机制主要包括化学键6、表面静电相互作用7和离子交换8

福加石(FAU)型沸石的孔隙相对较大,最大孔径为11.24 Å。它在污染物去除方面表现出高效率和广泛的应用910。近年来,广泛的研究致力于开发沸石合成的绿色和低成本程序,例如使用工业固体废物11 作为原料提供硅和铝源,或采用无指导剂配方12。报告的可作为硅和铝来源的替代工业固体废物包括煤矸石13,粉煤灰11,废分子筛14,采矿和冶金废物15,工程废弃土壤8和农业土壤6等。

本文以红壤为原料,以丰富且易获得的富硅和富铝材料为原料,建立了一种简便的绿色化学方法,用于Fe2O3/FAU型分子筛复合材料的合成(图1)。详细的合成参数经过微调。合成材料对重金属污染的水修复具有很高的固定能力。本研究对本领域相关研究者以土壤为原料进行生态材料合成具有指导意义。

Protocol

1. 原料收集和处理 红壤采集收集红土。去除含有植物和残留有机物的土壤的30厘米表层。注:本试验在广东深圳南方科技大学校园(东经113°59’,北纬22°36’)采集红壤。 红壤处理在室温下风干收集的红土,并通过30目筛过滤。去除大部分大石头和树叶。用电感耦合等离子体质谱(ICP-MS)16测量红壤中的重金属(loid)浓度(<strong…

Representative Results

图 1 说明了基于“土壤修复”策略的沸石整体合成路线6.通过简单的无机路线,红土可以转化为Fe2O3 / FAU型沸石复合材料,而无需添加任何Fe或Al源。合成的沸石复合材料在重金属污染水体修复中表现出优异的去除能力,可用于土壤修复。 图2显示了红壤XRF分析的结果。红壤的主要成分是SiO 2、</s…

Discussion

沸石通常是铝硅酸盐材料。理论上,可以选择富含硅酸盐和铝酸盐的材料作为合成沸石的原料。原材料的Si/Al比率必须与所选类型的沸石相似,以尽量减少额外硅/铝源6816的使用。FAU型沸石的Si/Al比为1.2,红壤的Si/Al比为1.3。因此,红土是合成FAU型沸石的完美Si和Al来源。然而,在这种方法中,并非所有红壤中的SiO2都…

Declarações

The authors have nothing to disclose.

Acknowledgements

这项工作由广东省杰出青年自然科学基金资助,编号:2020B151502094;国家自然科学基金,第21777045号和第22106064号;深圳市科技创新委员会成立,JCYJ20200109141625078;2019年广东省高校青年创新项目,编号:2019KQNCX133,广东省科技创新战略专项资金(PDJH2021C0033)。这项工作由深圳市材料界面科学与工程重点实验室(No.ZDSYS20200421111401738)、广东省土壤与地下水污染控制重点实验室(2017B030301012)、国家环境保护地表水-地下水污染综合治理重点实验室。我们特别感谢南科大核心研究设施的技术支持。

Materials

Chemicals
Cadmium nitrate tetrahydrate Shanghai Aladdin Bio-Chem Technology Co., LTD C102676 AR, 99%. Make 1,000 ppm  stock solution for the test of adsorption performance of zeolite.
Chromium(III) nitrate nonahydrate Shanghai Aladdin Bio-Chem Technology Co., LTD C116446 AR, 99%. Make 1,000 ppm  stock solution for the test of adsorption performance of zeolite.
Copper sulfate pentahydrate Shanghai Aladdin Bio-Chem Technology Co., LTD C112396 AR, 99%. Make 1,000 ppm  stock solution for the test of adsorption performance of zeolite.
Lead nitrate Shanghai Aladdin Bio-Chem Technology Co., LTD L112118 AR, 99%. Make 1,000 ppm stock solution for the test of adsorption performance of zeolite.
Nickel nitrate hexahydrate Shanghai Aladdin Bio-Chem Technology Co., LTD N108891 AR, 98%. Make 1,000 ppm  stock solution for the test of adsorption performance of zeolite.
Nitric acid Shanghai Aladdin Bio-Chem Technology Co., LTD N116238 AR, 69.2%. Used as solvent in ICP-MS test.
Potassium dichromate Shanghai Aladdin Bio-Chem Technology Co., LTD P112163 AR, 99.8%. Make 1,000 ppm  stock solution for the test of adsorption performance of zeolite.
Silicon dioxide Shanghai Aladdin Bio-Chem Technology Co., LTD S116482 AR, 99%. For synthesis of zeolite.
Sodium (meta)arsenite Sigma-aldrich S7400-100G AR, 90%. Make 1,000 ppm stock solution for the test of adsorption performance of zeolite.
Sodium hydroxide Shanghai Aladdin Bio-Chem Technology Co., LTD S111502 Pellets. For the synthesis of zeolite.
Zinc nitrate hexahydrate Shanghai Aladdin Bio-Chem Technology Co., LTD Z111703 AR, 99%. Make 1,000 ppm  stock solution for the test of adsorption performance of zeolite.
Equipment
Air-dry oven Shanghai Yiheng Technology Instrument Co.,LTD. DHG-9075A Used for hydrothermal crystallization and drying of sample
Analytical balance Sartorius Scientific Instruments Co.LTD BSA224S-CW Used for weighing samples
Centrifuge tubes Nantong Supin Experimental Equipment Co., LTD
High speed centrifuge Hunan Xiang Yi Laboratory Instrument Development Co.,LTD H1850 Used for separation of solid and liquid samples
Multipoint magnetic stirrer IKA Equipment Co.,LTD. RT15 Used for stirring samples
Oscillator Changzhou Guohua Electric Appliances Co.,LTD. SHA-B For uniform mixing of samples
Syringe-driven filter Tianjin Jinteng Experimental Equipment Co.,LTD. 0.22 μm. For filtration.
Softwares
JADE 6.5 Materials Data& (MDI)
Mercury Cambridge Crystallographic Data Centre (CCDC)
Materials Studio Accelrys Software Inc.
Websites
Database of Zeolite Structures: http://www.iza-structure.org/databases/
ICSD: https://icsd.products.fiz-karlsruhe.de/en

Referências

  1. Qin, G., et al. Soil heavy metal pollution and food safety in China: Effects, sources and removing technology. Chemosphere. 267, 129205 (2021).
  2. Xu, D. M., Fu, R. B., Liu, H. Q., Guo, X. P. Current knowledge from heavy metal pollution in Chinese smelter contaminated soils, health risk implications and associated remediation progress in recent decades: A critical review. Journal of Cleaner Production. 286, 124989 (2021).
  3. Dong, X., Ma, L. Q., Li, Y. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. Journal of Hazardous Materials. 190 (1-3), 909-915 (2011).
  4. El-Mekkawi, D. M., Selim, M. M. Removal of Pb2+ from water by using Na-Y zeolites prepared from Egyptian kaolins collected from different sources. Journal of Environmental Chemical Engineering. 2 (1), 723-730 (2014).
  5. Perego, C., Bagatin, R., Tagliabue, M., Vignola, R. Zeolites and related mesoporous materials for multi-talented environmental solutions. Microporous and Mesoporous Materials. 166, 37-49 (2013).
  6. Zheng, R., et al. Converting loess into zeolite for heavy metal polluted soil remediation based on "soil for soil-remediation" strategy. Journal of Hazardous Materials. 412, 125199 (2021).
  7. Cheng, Y., et al. Feasible low-cost conversion of red mud into magnetically separated and recycled hybrid SrFe12O19@NaP1 zeolite as a novel wastewater adsorbent. Chemical Engineering Journal. 417, 128090 (2021).
  8. Yang, D., et al. Remediation of Cu-polluted soil with analcime synthesized from engineering abandoned soils through green chemistry approaches. Journal of Hazardous Materials. 406, 124673 (2021).
  9. Song, W., Li, G., Grassian, V. H., Larsen, S. C. Development of improved materials for environmental applications: Nanocrystalline NaY zeolites. Environmental Science & Technology. 39 (5), 1214-1220 (2005).
  10. Cheng, H., Reinhard, M. Sorption of trichloroethylene in hydrophobic micropores of dealuminated Y zeolites and natural minerals. Environmental Science & Technology. 40 (24), 7694-7701 (2006).
  11. Rayalu, S. S., Bansiwal, A. K., Meshram, S. U., Labhsetwar, N., Devotta, S. Fly ash based zeolite analogues: Versatile materials for energy and environment conservation. Catalysis Surveys from Asia. 10 (2), 74-88 (2006).
  12. Borel, M., et al. SDA-free hydrothermal synthesis of high-silica ultra-nanosized zeolite Y. Crystal Growth & Design. 17 (3), 1173-1179 (2017).
  13. Jin, Y., Li, L., Liu, Z., Zhu, S., Wang, D. Synthesis and characterization of low-cost zeolite NaA from coal gangue by hydrothermal method. Advanced Powder Technology. 32 (3), 791-801 (2021).
  14. Huiyu, S., Weiming, L., Zheng, Z. Current situation of comprehensive utilization of waste industrial molecular sieve and agricultural rice husk. Liaoning Chemical Industry. 49 (12), 1555 (2020).
  15. Azizi, D., et al. Microporous and macroporous materials state-of-the-art of the technologies in zeolitization of aluminosilicate bearing residues from mining and metallurgical industries: A comprehensive review. Microporous and Mesoporous Materials. 318, 111029 (2021).
  16. Yang, D., et al. Transferring waste red mud into ferric oxide decorated ANA-type zeolite for multiple heavy metals polluted soil remediation. Journal of Hazardous Materials. 424, 127244 (2022).
  17. Kirdeciler, S. K., Akata, B. One pot fusion route for the synthesis of zeolite 4A using kaolin). Advanced Powder Technology. 31 (10), 4336-4343 (2020).
  18. Rubtsova, M., et al. Nanoarchitectural approach for synthesis of highly crystalline zeolites with a low Si/Al ratio from natural clay nanotubes. Microporous and Mesoporous Materials. 330, 111622 (2022).
  19. Setthaya, N., Chindaprasirt, P., Pimraksa, K. Preparation of zeolite nanocrystals via hydrothermal and solvothermal synthesis using of rice husk ash and metakaolin. Materials Science Forum. 872, 242-247 (2016).
  20. Belviso, C., et al. Red mud as aluminium source for the synthesis of magnetic zeolite. Microporous and Mesoporous Materials. 270, 24-29 (2018).
  21. Zhao, Y., et al. Removal of ammonium from wastewater by pure form low-silica zeolite Y synthesized from halloysite mineral. Separation Science and Technology. 45 (8), 1066-1075 (2010).
  22. Meng, Q., Chen, H., Lin, J., Lin, Z., Sun, J. Zeolite A synthesized from alkaline assisted pre-activated halloysite for efficient heavy metal removal in polluted river water and industrial wastewater. Journal of Environmental Sciences (China). 56, 254-262 (2017).
  23. Wang, X., et al. Synthesis of substrate-bound Au nanowires via an active surface growth mechanism. Journal of Visualized Experiments. (137), e57808 (2018).
  24. Asundi, A. S., et al. Understanding structure-property relationships of MoO3-promoted Rh catalysts for syngas conversion to alcohols. Journal of the American Chemical Society. 141 (50), 19655-19668 (2019).
  25. Zhu, Q., et al. Solvent-free crystallization of ZSM-5 zeolite on SiC foam as a monolith catalyst for biofuel upgrading. Chinese Journal of Catalysis. 41 (7), 1118-1124 (2020).
  26. Ghrear, T. M. A., et al. low-pressure, low-temperature microwave synthesis of ABW cesium aluminosilicate zeolite nanocatalyst in organotemplate-free hydrogel system. Materials Research Bulletin. 122, 110691 (2020).

Play Video

Citar este artigo
Chu, Z., Liang, J., Yang, D., Li, J., Chen, H. Resource Recycling of Red Soil to Synthesize Fe2O3/FAU-type Zeolite Composite Material for Heavy Metal Removal. J. Vis. Exp. (184), e64044, doi:10.3791/64044 (2022).

View Video