Summary

测定超细晶粒金属的机械强度

Published: November 22, 2021
doi:

Summary

本文介绍的方案描述了高压径向金刚石-铁砧-细胞实验并分析了相关数据,这对于获得纳米材料的机械强度至关重要,并且对传统方法有重大突破。

Abstract

金属的机械强化是工业界和学术界材料科学的长期挑战和热门话题。纳米金属强度的大小依赖性已经引起了很多人们的兴趣。然而,在较低的纳米尺度上表征材料的强度一直是一个很大的挑战,因为传统技术变得不再有效和可靠,例如纳米压痕,微孔压缩,拉伸等。目前的协议采用径向金刚石砧电池(rDAC)X射线衍射(XRD)技术来跟踪差分应力变化并确定超细金属的强度。结果表明,超细镍颗粒比粗颗粒具有更显著的屈服强度,镍的尺寸增强持续到3 nm。这一重要发现在很大程度上取决于有效和可靠的表征技术。rDAC XRD方法有望在研究和探索纳米材料力学方面发挥重要作用。

Introduction

抗塑性变形性决定了材料的强度。金属的强度通常随着晶粒尺寸的减小而增加。这种尺寸增强现象可以通过传统的霍尔-佩奇关系理论很好地说明,从毫米到亚微米状态12,该理论基于块状尺寸金属的位错介导的变形机制,即位错堆积在晶界(GB)并阻碍其运动,导致金属34中的机械强化。

相比之下,机械软化,通常被称为逆霍尔 – 佩奇关系,在过去二十年中已经报道了精细纳米金属的5678910因此,纳米金属的强度仍然令人费解,因为检测到粒径低至~10 nm1112的连续硬化,而低于10 nm状态的尺寸软化情况也报告了78910。这个有争议的主题的主要困难或挑战是对超细纳米金属的机械性能进行统计上可重复的测量,并在纳米金属的强度和晶粒尺寸之间建立可靠的相关性。另一部分困难来自纳米金属塑性变形机理的模糊性。纳米尺度上的各种缺陷或工艺已有报道,包括位错1314、变形孪生151617、堆垛断层1518、国标迁移19、国标滑动562021、晶粒旋转222324、原子键参数25262728 等然而,哪一个主导塑性变形,从而决定纳米金属的强度尚不清楚。

对于上述这些问题,传统的机械强度检验方法,如拉伸试验29、维氏硬度试验3031、纳米压痕试验32、微孔压缩333435等,效果较差,因为高质量的大片纳米结构材料很难制造,而常规压头比单纳米颗粒材料大得多(对于 单粒子力学)。在本研究中,我们将径向DAC XRD技术363738 引入材料科学 ,以原位 跟踪各种晶粒尺寸纳米镍的屈服应力和变形变形纹理,这些材料在以前的研究中用于地球科学领域。已经发现,机械强化可以扩展到3纳米,比以前报道的最大尺寸的纳米金属小得多,这扩大了传统的霍尔 – 佩奇关系的制度,暗示了rDAC XRD技术对材料科学的重要性。

Protocol

1. 样品制备 从商业来源获得3 nm,20 nm,40 nm,70 nm,100 nm,200 nm和500 nm镍粉(参见 材料表)。形态表征如图 1所示。 通过使用反应釜加热3nm镍颗粒来制备8nm镍颗粒(参见 材料表)。 将〜20mL无水乙醇和〜50mg 3nm镍粉放入反应釜中。注意:整个溶液不应达到水壶体积的约70%。 将反应釜在80°C下加热24小时。 …

Representative Results

在静水压缩下,展开的X射线衍射线应该是直的,而不是弯曲的。然而,在非静水压力下,曲率(XRD环的椭圆度,转化为沿方位角绘制的线的非线性)在相似的压力下显着增加超细晶粒镍(图4)。在类似的压力下,3nm尺寸的镍的差应变是最高的。机械强度结果(应力-应变曲线)如图 5所示。强度从较粗的晶粒不断增加到较细的晶粒,这与传统知识<sup cla…

Discussion

计算模拟已被广泛用于研究纳米金属5,616172742的晶粒尺寸对强度的影响。完美位错、部分位错和GB变形已被提出在纳米材料的变形机理中起决定性作用。在分子动力学模拟中,Yamakov等人42提出了一个变形机理图,包括完全…

Declarações

The authors have nothing to disclose.

Acknowledgements

我们感谢国家自然科学基金(NSFC)的支持,资助编号为11621062,11772294,U1530402和11811530001。本研究还得到了中国博士后科学基金(2021M690044)的部分支持。这项研究使用了先进光源的资源,这是美国能源部科学用户设施办公室,合同编号为DE-AC02-05CH11231和上海同步辐射设施。这项研究得到了COMPRES的部分支持,COMPRES是NSF合作协议EAR 1606856下的地球科学材料特性研究联盟。

Materials

20 nm Ni Nanomaterialstore SN1601 Flammable
3 nm Ni nanoComposix Flammable
40, 70, 100, 200, 500 nm Ni US nano US1120 Flammable
Absolute ethanol as the solution to make 8 nm Ni
Absolute isopropanol as the solution to make 12 nm Ni
Amorphous boron powder alfa asear
Copper mesh Beijing Zhongjingkeyi Technology Co., Ltd. TEM grid
Epoxy glue
Ethanol clean experimental setup
Focused ion beam FEI
Glass slide
Glue tape Scotch
Kapton DuPont Polyimide film material
Laser drilling machine located in high pressure lab of ALS
Monochromatic synchrotron X-ray Beamline 12.2.2, Advanced Light Source (ALS), Lawrence Berkeley National Laboratory X-ray energy: 25-30 keV
Optical microscope Leica to mount the gasket and load samples
Pt powder thermofisher 38374
Reaction kettle Xian Yichuang Co.,Ltd. 50 mL
Sand paper from 400 mesh to 1000 mesh
Transmission Electron Microscopy FEI Titan G2 60-300
Two-dimension image plate ALS, BL 12.2.2 mar 345

Referências

  1. Hall, E. O. The Deformation and ageing of mild steel.3. Discussion of results. Proceedings of the Physical Society of London Section B. 64 (381), 747-753 (1951).
  2. Conrad, H. Effect of grain size on the lower yield and flow stress of iron and steel. Acta Metallurgica. 11 (1), 75-77 (1963).
  3. Kanninen, M. F., Rosenfield, A. R. Dynamics of dislocation pile-up formation. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics. 20 (165), 569-587 (1969).
  4. Thompson, A. A. W. Yielding in nickel as a function of grain or cell size. Acta Metallurgica. 23 (11), 1337-1342 (1975).
  5. Schiotz, J., Di Tolla, F. D., Jacobsen, K. W. Softening of nanocrystalline metals at very small grain sizes. Nature. 391 (6667), 561-563 (1998).
  6. Schiotz, J., Jacobsen, K. W. A maximum in the strength of nanocrystalline copper. Science. 301 (5638), 1357-1359 (2003).
  7. Conrad, H., Narayan, J. Mechanism for grain size softening in nanocrystalline Zn. Applied Physics Letters. 81 (12), 2241-2243 (2002).
  8. Chokshi, A. H., Rosen, A., Karch, J., Gleiter, H. On the validity of the hall-petch relationship in nanocrystalline materials. Scripta Metallurgica. 23 (10), 1679-1683 (1989).
  9. Sanders, P. G., Eastman, J. A., Weertman, J. R. Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Materialia. 45 (10), 4019-4025 (1997).
  10. Conrad, H., Narayan, J. On the grain size softening in nanocrystalline materials. Scripta Materialia. 42 (11), 1025-1030 (2000).
  11. Chen, J., Lu, L., Lu, K. Hardness and strain rate sensitivity of nanocrystalline Cu. Scripta Materialia. 54 (11), 1913-1918 (2006).
  12. Knapp, J. A., Follstaedt, D. M. Hall-Petch relationship in pulsed-laser deposited nickel films. Journal of Materials Research. 19 (1), 218-227 (2004).
  13. Kumar, K. S., Suresh, S., Chisholm, M. F., Horton, J. A., Wang, P. Deformation of electrodeposited nanocrystalline nickel. Acta Materialia. 51 (2), 387-405 (2003).
  14. Chen, B., et al. Texture of Nanocrystalline Nickel: Probing the lower size limit of dislocation activity. Science. 338 (6113), 1448-1451 (2012).
  15. Chen, M. W., et al. Deformation twinning in nanocrystalline aluminum. Science. 300 (5623), 1275-1277 (2003).
  16. Yamakov, V., Wolf, D., Phillpot, S. R., Gleiter, H. Deformation twinning in nanocrystalline Al by molecular-dynamics simulation. Acta Materialia. 50 (20), 5005-5020 (2002).
  17. Yamakov, V., Wolf, D., Phillpot, S. R., Mukherjee, A. K., Gleiter, H. Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation. Nature Materials. 1 (1), 45-49 (2002).
  18. Yamakov, V., Wolf, D., Salazar, M., Phillpot, S. R., Gleiter, H. Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation. Acta Materialia. 49 (14), 2713-2722 (2001).
  19. Shan, Z. W., et al. Grain boundary-mediated plasticity in nanocrystalline nickel. Science. 305 (5684), 654-657 (2004).
  20. Li, H., et al. Strain-Dependent Deformation Behavior in Nanocrystalline Metals. Physical Review Letters. 101 (1), 015502 (2008).
  21. Van Swygenhoven, H., Derlet, P. M. Grain-boundary sliding in nanocrystalline fcc metals. Physical Review B. 64 (22), 224105 (2001).
  22. Ovid’ko, I. A. Deformation of nanostructures. Science. 295 (5564), 2386 (2002).
  23. Murayama, M., Howe, J. M., Hidaka, H., Takaki, S. Atomic-level observation of disclination dipoles in mechanically milled, nanocrystalline Fe. Science. 295 (5564), 2433 (2002).
  24. Wang, L., et al. Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nature Communications. 5, 4402 (2014).
  25. Edalati, K., et al. Influence of dislocation-solute atom interactions and stacking fault energy on grain size of single-phase alloys after severe plastic deformation using high-pressure torsion. Acta Materialia. 69, 68-77 (2014).
  26. Edalati, K., Horita, Z. High-pressure torsion of pure metals: Influence of atomic bond parameters and stacking fault energy on grain size and correlation with hardness. Acta Materialia. 59 (17), 6831-6836 (2011).
  27. Yamakov, V., Wolf, D., Phillpot, S. R., Mukherjee, A. K., Gleiter, H. Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nature Materials. 3 (1), 43-47 (2004).
  28. Starink, M. J., Cheng, X., Yang, S. Hardening of pure metals by high-pressure torsion: A physically based model employing volume-averaged defect evolutions. Acta Materialia. 61 (1), 183-192 (2013).
  29. Yang, T., et al. Ultrahigh-strength and ductile superlattice alloys with nanoscale disordered interfaces. Science. 369 (6502), 427 (2020).
  30. Hu, J., Shi, Y. N., Sauvage, X., Sha, G., Lu, K. Grain boundary stability governs hardening and softening in extremely fine nanograined metals. Science. 355 (6331), 1292 (2017).
  31. Yue, Y., et al. Hierarchically structured diamond composite with exceptional toughness. Nature. 582 (7812), 370-374 (2020).
  32. Li, X. Y., Jin, Z. H., Zhou, X., Lu, K. Constrained minimal-interface structures in polycrystalline copper with extremely fine grains. Science. 370 (6518), 831 (2020).
  33. Yan, S., et al. Crystal plasticity in fusion zone of a hybrid laser welded Al alloys joint: From nanoscale to macroscale. Materials and Design. 160, 313-324 (2018).
  34. Khalajhedayati, A., Pan, Z., Rupert, T. J. Manipulating the interfacial structure of nanomaterials to achieve a unique combination of strength and ductility. Nature Communications. 7 (1), 10802 (2016).
  35. Chen, L. Y., et al. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature. 528 (7583), 539-543 (2015).
  36. Zhou, X., et al. High-pressure strengthening in ultrafine-grained metals. Nature. 579 (7797), 67-72 (2020).
  37. Lutterotti, L., Vasin, R., Wenk, H. -. R. Rietveld texture analysis from synchrotron diffraction images. I. Calibration and basic analysis. Powder Diffraction. 29 (1), 76-84 (2014).
  38. Singh, A. K., Balasingh, C., Mao, H. K., Hemley, R. J., Shu, J. F. Analysis of lattice strains measured under nonhydrostatic pressure. Journal of Applied Physics. 83 (12), 7567-7575 (1998).
  39. Hemley, R. J., et al. X-ray imaging of stress and strain of diamond, iron, and tungsten at megabar pressures. Science. 276 (5316), 1242-1245 (1997).
  40. Merkel, S., et al. Deformation of polycrystalline MgO at pressures of the lower mantle. Journal of Geophysical Research-Solid Earth. 107, 2271 (2002).
  41. Singh, A. K. The lattice strains in a specimen (cubic system) compressed nonhydrostatically in an opposed Anvil device. Journal of Applied Physics. 73 (9), 4278-4286 (1993).
  42. Van Swygenhoven, H., Derlet, P. M., Frøseth, A. G. Stacking fault energies and slip in nanocrystalline metals. Nature Materials. 3 (6), 399-403 (2004).
  43. Chung, H. Y., et al. Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure. Science. 316 (5823), 436-439 (2007).
  44. Jo, M., et al. Theory for plasticity of face-centered cubic metals. Proceedings of the National Academy of Sciences. 111 (18), 6560 (2014).
  45. Klueh, R. L. Miniature tensile test specimens for fusion reactor irradiation studies. Nuclear Engineering and Design, Fusion. 2 (3), 407-416 (1985).
  46. Konopík, P., Farahnak, P., Rund, M., Džugan, J., Rzepa, S. Applicability of miniature tensile test in the automotive sector. IOP Conference Series: Materials Science and Engineering. 461, 012043 (2018).
  47. Yang, J., et al. Strength enhancement of nanocrystalline tungsten under high pressure. Matter and Radiation at Extremes. 5 (5), 058401 (2020).
  48. Chen, B. Exploring nanomechanics with high-pressure techniques. Matter and Radiation at Extremes. 5 (6), (2020).

Play Video

Citar este artigo
Xu, J., Wang, Y., Yan, J., Chen, B. Determining the Mechanical Strength of Ultra-Fine-Grained Metals. J. Vis. Exp. (177), e61819, doi:10.3791/61819 (2021).

View Video