This protocol describes approaches for detection and quantitation of large aggregate and/or organelle extrusions (~4 µm) produced by C. elegans cells in the form of membrane-bound exophers. We describe strains, growth conditions, scoring criteria, timing, and microscopy considerations needed to facilitate dissection of this debris expulsion mechanism.
Toxicity of misfolded proteins and mitochondrial dysfunction are pivotal factors that promote age-associated functional neuronal decline and neurodegenerative disease across species. Although these neurotoxic challenges have long been considered to be cell-intrinsic, considerable evidence now supports that misfolded human disease proteins originating in one neuron can appear in neighboring cells, a phenomenon proposed to promote pathology spread in human neurodegenerative disease.
C. elegans adult neurons that express aggregating proteins can extrude large (~4 µm) membrane-surrounded vesicles that can include the aggregated protein, mitochondria, and lysosomes. These large vesicles are called “exophers” and are distinct from exosomes (which are about 100x smaller and have different biogenesis). Throwing out cellular debris in exophers may occur by a conserved mechanism that constitutes a fundamental, but formerly unrecognized, branch of neuronal proteostasis and mitochondrial quality control, relevant to processes by which aggregates spread in human neurodegenerative diseases.
While exophers have been mostly studied in animals that express high copy transgenic mCherry within touch neurons, these protocols are equally useful in the study of exophergenesis using fluorescently tagged organelles or other proteins of interest in various classes of neurons.
Described here are the physical features of C. elegans exophers, strategies for their detection, identification criteria, optimal timing for quantitation, and animal growth protocols that control for stresses that can modulate exopher production levels. Together, details of protocols outlined here should serve to establish a standard for quantitative analysis of exophers across laboratories. This document seeks to serve as a resource in the field for laboratories seeking to elaborate molecular mechanisms by which exophers are produced and by which exophers are reacted to by neighboring and distant cells.
The neurotoxic challenges of aggregates and dysfunctional mitochondria have long been considered to be cell-intrinsic, but more recently it has become clear that misfolded human disease proteins originating in one neuron can also spread to neighboring cells, promoting pathology1. Likewise, mammalian mitochondria can be sent out of the cell of their original production for transcellular degradation2 or for rescue of mitochondrial populations in challenged neighboring cells3. Vesicles of various sizes have generally been observed to transfer cellular materials to neighboring cells or to fluid surroundings4. Some extruded vesicles approach the size of the average neuronal soma (average touch neuron soma ~ 6 µm) and can accommodate large aggregates and organelles.
A striking example of large vesicle extrusion that can carry protein aggregates and organelles occurs in C. elegans touch receptor neurons that express a high copy number reporter construct encoding a noxious aggregation-prone, degradation-resistant mCherry5. Extrusions from the touch neurons, called exophers, are ~4 µm average diameter, selectively include mCherry or other aggregates, and are delivered directly into the neighboring hypodermis, which normally surrounds the touch receptor neurons. The hypodermis attempts lysosome-based degradation, but some non-digestible contents such as mCherry aggregates can be re-extruded by the hypodermis into the fluid-filled pseudocoelom of the animal, from which the mCherry can be taken up by remote scavenger cells called coelomocytes for long term storage (Figure 1, Figure 2)5.
The large extruded exopher vesicles leave the cell surrounded by touch receptor plasma membrane and can contain aggregated human disease proteins, mitochondria, and lysosomes. The process of exopher production appears to involve sorting of potentially toxic species (for example an aggregation-prone expressed mCherry is segregated from soluble, inoffensive proteins like GFP that remains mostly in the neuronal soma). In this way, directed expulsion of the threatening entities is accomplished by the neuron5. A proteostasis challenge, such as stress induced by autophagy knockdown, MG132-mediated proteasome inhibition, or transgenic expression of human disease proteins such as Huntington’s disease-associated expanded polyglutamine Q128 or Alzheimer’s disease-implicated fragment Aβ1-42, can increase the numbers of neurons that produce exophers5.
As exophers have only recently been documented, what is known of their biology merits description. Exophers were discovered in, and are the most well studied in, C. elegans touch receptor neurons. There are six C. elegans mechanosensory touch neurons that have cell bodies distributed around the body (Figure 3A) and are called microtubule cells because their ultrastructure features distinctive 15 protofilament microtubules. The touch receptor neurons are the anterior AVM (anterior ventral microtubule neuron), ALMR, and ALML (anterior lateral microtubule neurons right and left), the more central PVM (posterior ventral microtubule neuron), and the posterior PLMR and PLML (posterior lateral microtubule neurons right and left) in the tail. Interestingly, the six touch receptor neurons produce exophers at different rates, despite expressing the same offensive transgene (Figure 3C). Of the six mechanosensory touch receptor neurons, the ALMR neuron undergoes exophergenesis more often than the other touch neurons. Quantitation of exopher numbers from touch neurons is thus usually established by focusing upon the ALMR.
Exophergenesis is a dynamic process that typically begins with swelling of the neuronal cytoplasm (Figure 1A-B). Cellular contents, organelles, or protein aggregates are collected to one side of the neuronal soma, most commonly toward the posterior end of the ALMR neuron (away from the projecting neurite), forming a pre-exopher domain (PED) (Figure 1B). The early protrusion is observed as the PED begins to project outwards, forming a recognizable protruded bud. The late bud is defined when the widest diameter of the pre-exopher domain is approximately ⅓ larger than the diameter of the constriction of the soma-exopher neck (Figure 1C). Exophers can be ejected in nearly any direction from the soma, but most exophers exit posteriorly from the cell body and remain in approximately the same focal plane as the originating soma.
The exopher can move away from the originating soma as the neck of the bud narrows into a thin filament. Exophers can remain attached to the soma via this filament (Figure 1D, arrow) and can later become detached. Cellular contents such as calcium, aggregates, and mitochondria can be transferred via this filament into the attached exopher5, although the bulk of extruded material is put into the exopher compartment by the massive budding event. Exophers are considered mature when there is no visible connecting tube or thin filament and the exopher is fully separated from the sending soma (Figure 1E).
Exophers produced by C. elegans touch neurons immediately encounter the hypodermis, the tissue that surrounds the touch neuron. Most commonly, the exopher vesicle appears to travel within the hypodermis posteriorly towards the tail, and can be fairly distant from the soma before exopher contents appear targeted for degradation (for example, the distance can be ~100 µm away from the soma (Figure 1F)). The fluorescent exopher vesicle breaks up into many smaller vesicles within the hypodermis, taking on an appearance referred to as “starry night” (Figure 1G and Figure 2). In the “starry night” stage, punctate fluorescent material can be observed scattered across the hypodermal syncytium into many smaller points of fluorescence as compared to the original solitary exopher. Starry night can look punctate under low magnification and with higher magnification, can look punctate and/or networked within the hypodermis. The fluorescent signal of the starry night is typically dimmer than the exopher and the neuronally expressed fluorescence (Figure 2B-C). The dispersal of mCherry into many punctate vesicles is thought to involve phagosome maturation and fusion with the endosomal/lysosomal network of the hypodermal cell. Some exopher materials are likely degraded in the hypodermal lysosomal network, but residual species that are resistant to degradation (such as mCherry aggregates) are thrown out of the hypodermis into the pseudocoelom, a fluid compartment that can contain cellular debris. The fluorescent material is later taken in by remote scavenger cells called coelomocytes (Figure 2C), which can concentrate, store, and again attempt degradation of mCherry.
The phenomenon of aggregate extrusion and transfer appears conserved across phyla, having been reported in genetic models such as C. elegans5,6,7 and D. melanogaster8,9 as well as in multiple mammalian models. Exopher-like extrusions have been reported for mammalian cells10, an observation suggesting that conserved mechanisms might underlie aggregate and organelle expulsion. Exopher production may thus be a conserved mechanism of cellular debris management that constitutes a fundamental, but formerly unrecognized, branch of neuronal proteostasis and mitochondrial quality control, which, when imbalanced, might actively contribute to neurodegenerative disease. Identification of the molecules involved in debris discrimination and sorting, transport to a distinct subcellular locale, extrusion, formation/scission of the tubular connection linking the soma and late exopher, and recognition of the large extruded vesicle for remote degradation by a neighboring cell remain for future work. Studies in nematode and fly models will be critically important to defining mechanisms of aggregate and organelle collection and transfer, utilizing unbiased genetic approaches and powerful cell biological tools offered by these models to identify participating molecules in physiological context.
Critical first steps in deciphering mechanisms operative in exopher biology involve defining protocols for reproducible in vivo exopher quantification. The C. elegans model offers a particular advantage for such efforts since the body is transparent and exophers can be readily observed when they contain fluorescently tagged proteins or organelles. Exophers have been reported to be generated by C. elegans dopaminergic neurons PDE and CEP, ASE and ASER sensory neurons, and dye-filling amphid neurons5. Because exophers produced by touch receptor neurons are best characterized, the focus here is on the use of touch neurons for exopher analysis. However the basic approach can be applied to measure exopher production from any cell. Protocols to detect and quantitate exophers produced by C. elegans touch receptor neurons that transgenically express mCherry protein are outlined, with an emphasis on cargoes that can be monitored and temporal constraints in scoring. This article defines approaches toward in vivo exopher identification, and the quantitation of environmental and genetic conditions that modulate exopher production. Protocols emphasize critical attention to constant non-stress conditions for the determination of baseline exopher production and for comparisons across genotypes.
1. Strains useful for exopher detection
2. Growth media
3. Animal husbandry critical for consistent exopher production
4. Age synchronization for exopher scoring by bleaching, sucrose flotation, or L4 larvae picking
5. Detection of exophers using a fluorescent microscope
6. Identifying touch neurons and scoring for exophers with mounted animals
7. Identifying and scoring for exophers
8. Scoring and statistics
Multiple fluorescent reporters can be used to measure exophers. Touch neuron exophers are readily visualized in vivo via fluorescent tagging of proteins that may be selected for extrusion, by labelling of organelles that can be extruded, or by tagging cell membranes. Table 1 identifies touch neuron expressed fluorescent reporters that have been used to monitor exophers, with representative examples included in Figure 4. Cargoes that are known to be extruded in exophers include a fusion of the N-terminal domain of human huntingtin to expanded polyglutamine (Q128) (Figure 4B), lysosomes that are GFP-tagged with lysosomal associated membrane protein (LMP-1) (Figure 4C), and mitochondria tagged with matrix-localized GFP (Figure 4D). Cytoplasmic GFP is not strongly expelled and is preferentially retained in the soma5, although GFP can weakly visualize exophers (Figure 4A). When GFP is fused to proteins that are expelled, this tag can be used to visualize exophers. An important point is that by tagging different proteins, a large range of questions on the expulsion of specific cargoes and organelles, as well as on the proteins and membranes that make up exophers, can be addressed.
A pseudo-stereomicroscope setup is an effective tool for viewing exophers in animals upon agar plates. This setup is a hybrid of compound and stereoscopic technology that includes high numerical aperture optics on each magnification, pseudo-stereo technology (discrete objectives over a stereoscopic base), and a zoom operating switch for viewing at magnifications intermediate to installed objectives. A microscope such as this should be equipped with 10x eyepieces and objectives powerful enough for observing neuronal morphology and exopher production for high-throughput scoring (2x objective used for scanning/picking, 10x objective used for identifying and scoring).
While magnification capabilities of standard stereomicroscopes typically have high enough resolution to see the network of touch neurons expressing fluorescent proteins, standard dissecting microscopes are not sufficient for observing subcellular details of exophers like the tubular connections of soma to exopher. Such observations necessitate confocal microscopy (see the Table of Materials for equipment details).
Exopher quantitation studies require strict controls to eliminate experimental stresses. The attentive maintenance of consistent growth conditions is required for reproducible exopher production. More specifically, exopher production is stress-responsive such that consistent feeding, constant temperature, and contamination-free growth across generations are critical for reproducibility. Under basal growth conditions with high neuronal expression of mCherry, exopher production is relatively low (5-25% of ALMRs produce exophers) but some stresses, including osmotic and oxidative stress, can increase exopher rates. While mCherry expression can be thought of as stress, a corollary of the stress-sensitivity of exopher levels is that, if properly controlled, experimental stress introduction can be a strategy to more easily induce and observe exophergenesis.
Timing and anticipated exopher production levels. Exophers are virtually absent during larval development. The period of peak exopher production in young adult life appears to be highly restricted to during adult days 1-4, most commonly being evident at adult day 2 or 3. Because the peak can shift ahead or back a little, the most complete evaluation of an exopher production profile is to score multiple trials daily over adult days 1-4. In general, an ALMR produces one major exopher, with the vesicle persisting for at least 24 hours. The exopher can be produced fairly quickly (on the order of minutes at its fastest). Most commonly, only one major exopher is produced per neuron in early adult life, but production of multiple exophers is possible.
In general exopher production by ALMRs expressing mCherry under basal conditions ranges from 5-25% of ALMRs examined within the optimal timeframe of adult day 2-3 (Figure 3D). Proteostasis crises5, as well as exposure to other stresses can modulate exopher level. Stress or genetic perturbations can increase exopher production to detection rates as high as 90% of ALMR neurons producing exopher extrusions.
Feeding-based RNAi for testing roles of specific genes in exophergenesis. The nematode C. elegans is commonly subjected to RNAi knock down by feeding animals transformed E. coli strain HT115 that express a double stranded RNA (dsRNA) targeting a gene of interest20. HT115 bacteria can be used when scoring for exophers in feeding RNAi5. While transcripts in most tissues can be targeted by RNAi using this technique, neurons are more refractory. Sensitivity to RNAi can be calibrated using animals that express the transgenic dsRNA transporter SID-1 under a neuron-specific promoter. In this way neuronal tissue can be sensitized to RNAi21.
Tissue-specific knockdown of a gene of interest can be accomplished by expressing a component of endogenous RNAi metabolism within a mutant that is deficient in that component. For example: the Argonaute protein RDE-1 can be expressed specifically in the neurons of rde-1 mutant animals to achieve knockdown of a gene of interest only in neurons when animals are exposed to an RNAi intervention targeting that gene.
Using standard nematode RNAi protocols20,22, exposure of the parents at the L4 stage to the RNAi and allowing their progeny to develop consuming transformed HT115 bacteria until adulthood generates the strong genetic knock-down but be attentive to potential developmental delays induced by RNAi as experimental animals may grow differently than an empty vector control. It is important to always include the empty vector control for negative control comparison. HT115 bacteria can be used when scoring for exophers in feeding RNAi. However, note that some genes are effective at changing exophergenesis rates even during shorter periods of RNAi exposure5. If targeting of certain genes leads to developmental failure, avoid exposing animals to lifelong knockdown, animals can simply be picked at the L4 stage onto RNAi plates for exposure from L4 to adult D2 or D3.
Strain name | Genotype | Description | Exopher percentage | Reference |
SK4005 | zdIs5[Pmec-4GFP] | Cytosolic expression of GFP in touch neurons. | 1-8% ALM | Figure 4A, Melentijevic 2017 |
ZB4065 | bzIs166[Pmec-4::mCherry] | Overexpression of mCherry (bzIs166) in touch neurons, produces both cytosolic signal and mCherry aggregates. bzIs166 is an exopher inducer. mCherry aggregates are predictors of exophergenesis and are preferentially extruded in exophers. | 3-20% ALM (normal conditions). 20-80% ALM (fasting conditions). | Figure 4B, Melentijevic 2017 |
ZB4067 | bzIs167[Pmec-4mitogfp Pmec-4mCherry4]; igIs1[Pmec-7YFP Pmec-3htt57Q128::cfp lin-15+]; | YFP cytosolically labels mec-7 touch neurons. Co-expressed Q128::CFP aggregates and induces exophers. CFP preferentially silences. | ~25% | Figure 4C, Meletijevic 2017 |
ZB4509 | bzIs166[Pmec-4mCherry]; bzIs168[Pmec-7LMP-1::GFP] | bzIs168 LMP-1::GFP labels plasma membranes and lysosomal membranes. bzIs168 can be used to identify neuronal membranes, exophers (as they are membrane bound), and lysosomal-membrane structures. | 3-20% ALM | Figure 4D, Melentijevic 2017 |
ZB4528 | bzIs166[Pmec-4mCherry]; zhsEx17 [Pmec-4mitoLS::ROGFP] | Allele zhsEx17 is a mitochondrially localized reporter that changes its peak excitation wavelength from 405nm (oxidized) to 476nm (reduced) according to the local oxidative environment. It is expressed in the touch neurons and can be used on its own to identify mitochondria in touch neurons and in mito-exophers. | 3-20% ALM proteo-exopher. % ALM mito-exopher quantitation in progress. | Figure 4E, Melentijevic 2017, Cannon 2008, Ghose 2013 |
Table 1. Strains that have been used for visualization of touch neurons, touch neuron-exophers, and exopher contents.
Figure 1: Stages of Exophergenesis. The process of making and ejecting an exopher is called ‘exopher-genesis’. The dynamic process of exopher formation can take several minutes to several hours. Depicted are examples of soma and exopher morphology at specific steps during the dynamic exophergenesis process in a high-exopher producing strain, ZB4065 bzIs166[Pmec-4mCherry]. All images are of day 2 adult ALM neurons taken with a 100x objective. (A) Normal soma. Adult mechanosensory touch neuron ALM transgenically expressing Pmec-4mCherry. The soma morphology depicted is typical of young adult neurons in this strain, with mCherry concentrations in the cytoplasm. (B) Early bud phase. The first observable step of exophergenesis involves polarization of selected cytoplasmic material to the edge of the soma membrane. This step is often accompanied by an expansion or swelling of the soma. In the case of the touch neurons, the pre-exopher domain (PED) extends into the surrounding hypodermis (not visible here). Note the greater concentration of mCherry material into the early bud domain. (C) Late bud phase. Upon further cellular polarization and an expansion of the pre-exopher domain, a constriction between the soma and exopher (arrow) becomes evident. This event signals the transition to the late bud phase. Although in the late bud stage the cell exhibits a clear constriction site and separate soma and exopher domains, it is not yet pinched off completely from the soma; the budding exopher may be attached by a thick stalk (arrow). The budding domain is considered an early exopher when the diameter of the exopher domain in question is roughly ⅓ larger than the diameter of the construction site/stalk. (D) Early-exopher phase. Early exophers can be attached by a stalk from the departing soma—the diameter of this connection can thin as the exopher moves away from the soma. Cytoplasmic material can be transferred from the soma to the exopher via this tube, although most material is loaded during the process of budding out. Exophers can detach from the soma as depicted in (E), separated exophers are considered mature exophers (F). The mature exopher can transit through the surrounding hypodermal tissue, moving away from the departing soma. (G) Breakdown of the mCherry-labelled exopher into smaller vesicles within the hypodermis results in a scattered punctate appearance of the mCherry material, most likely as it enters the hypodermal endolysosomal network. The dispersed punctate signal is called the “starry night” phase. Degradation of some exopher contents is likely accomplished by hypodermal lysosomes, but some material is not fully degraded and is often re-extruded by the hypodermis into the pseudocoelom. The post-exophergenesis mCherry transit is described in more detail in Figure 2. Please click here to view a larger version of this figure.
Figure 2: mCherry extruded from touch neurons in exophers engages the surrounding hypodermal lysosomal network but can later be extruded into the pseudocoelom where coelomocytes can store/degrade the mCherry. (A) Cartoon summary of how mCherry extruded in exophers transits the body after expulsion by neurons. During exophergenesis selected cellular contents such as mCherry become localized and bud off from the sending neuronal soma in an independent vesicle surrounded by the neuronal and hypodermal plasma membranes. Since the touch neurons are embedded in the hypodermal tissue, as the exopher domain buds outwards it moves further into the hypodermis. The exopher can transit the hypodermis, and after hours to days, exopher contents can fragment within the endolysosomal network of the hypodermis. The mCherry can appear as scattered puncta throughout the hypodermis, a stage called “starry night”. After a few days, some of the mCherry can pass out of the hypodermis into the surrounding pseudocoelom, where scavenger cells called coelomocytes can get access to, and take up, mCherry that can be stored. (B) Example of the appearance of the starry night mCherry vesicles. Image of an ALM soma tagged with mCherry with large exopher fragments and starry night vesicles. Strain is ZB4065 bzIs166[Pmec-4mCherry]. (C) Example of mCherry concentration in distant coelomocytes. Sideview of an adult animal day 10 of strain ZB4065 bzIs166[Pmec-4mCherry] showing mCherry concentrated in coelomocytes (arrows). Some starry night vesicles are also evident. In general coelomocyte concentration becomes evident after about adult day 5 of life. (B bottom) Cartoon reproduction of (B), with touch neurons and processes outlined in red, as are brightest exopher fragments; scattered small vesicles of different Z-depths are shown in lighter pink. (C bottom) Cartoon version of image of (C), showing neuronal process in red, starry night in pink and coelomocytes in green. Please click here to view a larger version of this figure.
Figure 3: Mechanosensory touch neurons produce exophers at different levels with a precise temporal profile. (A) (Top) Cartoon depiction of mechanosensory touch neurons in spatial relation to key anatomical landmarks of C. elegans including the pumping pharynx and the neuron-dense nerve ring at the head of the animal, the vulva at the mid body, and the tapered tail. (Bottom) Fluorescently labeled touch neurons expressing GFP as viewed from the top and left side (images adapted from WormAtlas). The red box depicts the area where ALM exophers are typically located. (B) High magnification view of the mid body region at which ALM-derived exophers are produced in a strain expressing [Pmec-4mCherry]. AVM and ALMR neuron are depicted, and shown is an ALMR exopher along with mCherry starry night. ALMR neurons most readily produce exophers. (C) ALMR mechanosensory touch neurons more readily produce exophers compared to other touch neurons in hermaphrodites under basal conditions. Mechanosensory touch neuron exopher production on adult day 2, as scored for individual touch receptor neurons is indicated. Strain: ZB4065 bzIs166[Pmec-4mCherry], N>150, error bars are SEM. (D) ALMR touch neurons produce more exophers during days 2 and 3 of adulthood compared with the adolescent L4 stage or with animals in advanced age. Strain: ZB4065 bzIs166[Pmec-4mCherry], N>150, error bars are SEM. Please click here to view a larger version of this figure.
Figure 4: Examples of some fluorescent reporters that tag exopher contents. A straightforward way to observe exophers is by creating transgenic animals that express fluorophores from neuronal promoters. The fluorophores allow for visualization of the exopher and transgenic expression induces aggregation and/or proteostress that increases exophergenesis. Exophers produced by amphid neurons can also be observed under native conditions, using dye filling for visualization. Shown are examples of common strains that can be used to observe exophers, (E) exopher, (S) soma. (A) Soma and exopher from an ALM of an adult of strain SK4005 zdIs5[Pmec-4GFP],100x objective used for photography, scale bar 3μm. In this strain, exophers that include soluble GFP are measured, but exopher production occurs infrequently. Fusing GFP to proteins that can be preferentially extruded in exophers in other studies confirms that GFP fusions can be detected in mature exophers. (B) ALM soma and exopher of an adult of strain ZB4065 bzIs166[Pmec-4mCherry], which expresses mCherry and induces touch neuron exopher production. 100x objective used for photography, scale bar 5 μm. (C) ALM soma and exopher of an adult of strain ZB4067 bzIs167[Pmec-4mitogfp Pmec-4mCherry4]; igIs1[Pmec-7YFP Pmec-3htt57Q128::cfp lin-15+]; selective blue channel used for image of htt57Q128::CFP. The exopher contains htt57Q128::CFP aggregates (arrows), that appear more concentrated in the exopher than in the soma. 40x objective used for photography, scale bar 5μm. (D-E) Exophers can contain organelles and organelle-specific tagging with fluorescent proteins enables monitoring of organelle extrusion. (D) Lysosomal membrane tag LMP-1::GFP outlines the soma and exopher membrane and tags plasma membranes weakly (plasma membrane localization is a trafficking step on the way to lysosomal targeting) and labels lysosomal organelles strongly. Shown is an adult ALM soma co-expressing Pmec-4mCherry and the Pmec-7LMP-1::GFP that localizes to membranes and lysosomes. The soma has an attached exopher with other smaller extrusions likely to be exopher fragments (arrows). GFP positive structures are included in the soma and are present in the large exopher, strain: ZB4509 bzIs166[Pmec-4mCherry]; bzIs168[Pmec-7LMP-1::GFP]. 100x objective used for photography, scale bar 5 μm. E) A mitochondrial GFP marker can be used to identify mitochondria in soma and exophers. Shown is an adult ALM soma expressing Pmec-4mCherry and mito::ROGFP, which localizes to the mitochondrial matrix. mito::ROGFP expressed alone, without the mCherry, can also readily be used to identify neurons and score for exophers that include mitochondria. Strain: ZB4528 bzIs166[Pmec-4mCherry]; zhsEx17 [Pmec-4mitoLS::ROGFP]. 100x objective used for photography; scale bar 5μm. Please click here to view a larger version of this figure.
Figure 5: Developmental cycle of C. elegans and L4 identification. (A) At 20 °C an egg takes approximately 9 hours to hatch once laid by the mother. (B) A newly hatched animal is in larval stage 1 (L1) and molts into an L2 larva after 12 hours. (C) Animals remain in the L2 and the (D) L3 larval stages for about 8 hours each. (E) Adolescent animals are considered the fourth larval stage (L4) and are marked by a conspicuous developing vulva that appears as a white crescent near the mid body. The presence of this while crescent enables easy identification and picking of L4 staged animals to establish synchronized cultures that later facilitate scoring for exophers. Animals remain in the L4 stage for about 10 hours before their final molt into gravid adults, F) identified by developing eggs, visible spermatheca, and the initiation of egg-laying. Please click here to view a larger version of this figure.
Figure 6: Preparation of microscope slide agar pad. (A) Prepare two slides with a single strip of laboratory tape placed lengthwise across the top. Place a non-taped microscope slide in between as pictured. B) Place a drop of molten agarose on top of the slide. (C) Place a clean slide gently on top of the drop, pressing the agarose into a deflated circle pad. (D) Remove the taped slides, which act to accomplish an even flattening of the agar that is needed to create an even pad. (E) Remove the top slide once the agarose pad has dried. (F) Pipette a paralytic solution (levamisole or tetramisole) on top of the agar pad. (G) Pick appropriately staged animals into the paralytic. (H) Gently cover the animals with a coverslip and ensure animals are alive. Please click here to view a larger version of this figure.
Figure 7: Characters of exophers and exopher identification criteria. (A) General criteria that identify an exopher. (B) Diameter comparisons between the sending soma and the extruded exopher, measured in μm. Adult ALM somas, N=35, strain: ZB4065 bzIs166[Pmec-4mCherry] – 6.53 μm average size of soma and 3.83 μm average size of exopher. (C) Defining criteria for differentiating between an exopher domain and a budding exopher. (D) Most commonly, individual neurons make one large exopher, which later splits or fragments as the hypodermis attempts to degrade its contents. Still, multiple exophers may be observed next to one touch neuron that might derive from either multiple exopher events from one neuron or alternatively, exophers can also bud or fragment themselves. The origin of multiple exopher-like entities can only be determined using time lapse microscopy. Top depicts an ALMR touch neuron soma with a single distant exopher. Bottom depicts an ALMR touch neuron soma with multiple exopher-like extrusions. (E) Common morphological features in adult ALM touch neuron somas that may be mistaken for exopher events. Top left – A distended ALM soma, with no clear exopher domain or constriction site. Top middle – Neurons can have small extracellular protrusions that may be analogous to exophers, but do not meet size requirement criteria to be considered an exopher. Top right – With age, touch neurons can develop outgrowths along their minor neurite. Often mCherry material can be collected at the tip of the neurite outgrowth. This is not scored as an exopher if the collected mCherry does not meet exopher-to-soma size requirements. Bottom depicts adult ALM neurons that have defining criteria for an exopher domain or an exopher. Botom left – ALM soma that has a prominent exopher domain that selectively includes mCherry cytosol and mCherry tagged aggregates. The exopher domain constriction site is marked by arrows and meets the size criteria (at least 1/5th the size of the soma). The largest diameter of the exopher domain is almost ⅓ bigger than the diameter of the constriction site, meeting criteria for an exopher event. Bottom middle – ALM soma that has a prominent budding exopher that meets the size criteria. There is a clear constriction site. Bottom right – ALM soma that has an attached mCherry-filled exopher that meets exopher size requirements. The exopher is attached by a thin connecting filament. All images are from strain ZB4065 bzIs166[Pmec-4mCherry]. Please click here to view a larger version of this figure.
The characterization of the in vivo molecular mechanisms of aggregate and organelle elimination in the form of large exophers is in its infancy. Questions as to the designation of cargoes for expulsion, the polarized collection of these cargoes within the cell, the regulation of the decision to generate exophers, the machinery that mediates extrusions, and the interaction of exophers with the degradative machinery in a neighboring cell all remain to be addressed. Furthermore, the in vivo visualization of tubular connections that can pass biological materials that include calcium, aggregates, and mitochondria is interesting and understudied biology in its own right. Questions of why certain cells are more prone to exopher production than others also are unresolved, but can begin to be genetically dissected with the approaches outlined in this protocol.
Described in detail in this protocol are the approaches to achieving reproducible scoring of exopher production, with attention to distinguishing exophers from nearby cell somas, timing of analyses to capture peak of exopher production, and strict control of growth conditions to eliminate unintended stresses that can modulate exopher levels. Both distinction of the large early exopher, or the “starry night’ dispersion in the surrounding hypodermis can be quantitated as evidence of exopher production. That being said, neurons expressing mCherry under basal conditions are most often associated with 5-25% of neurons of a specific type producing an exopher. Controlled introduction of stress conditions could be applied to increase exopher production to detection as high as 90% of neurons producing extrusions, particularly useful for genetic or pharmacological screens for modifiers.
In human neurodegenerative disease, large aggregates can transfer from diseased neurons into neighboring cells to promote pathology spread. The exopher mechanism might transpire via a conserved mechanism used for aggregate extrusion across phyla. Defining the in vivo molecules that either enhance the efficiency of this process (considered more effective proteostasis control) or block it might be harnessed to influence design of novel strategies for combating multiple neurodegenerative diseases. As such, the protocol described here could be used for classical genetic mutagenesis screens, genome-wide RNAi screens that systematically knock down genes to identify enhancers and suppressors, or for drug intervention studies that identify candidate pharmacological modifiers of this process. The approach is straightforward, although somewhat laborious. Exophers are so large they can be viewed with a high-magnification dissecting microscope. Still, C. elegans neurons are relatively small and looking at their organelles or their membranes require higher power confocal images and is a slow process. Options for higher throughput could involve high content imaging approaches in multi-well plate format.
The application of a standardized approach to exopher scoring should underlie a concerted genetic dissection of the process by which neurons can organize and eliminate cellular debris.
The authors have nothing to disclose.
We acknowledge the following NIH grants: R01AG047101 and R37AG56510. Members of the Driscoll and Grant labs have contributed extensively to the development and fine tuning of protocols described, with rigorous experiments and strong communication.
95B Scientific CMOS camera | Photometrics Prime | ||
1,000 μL low retention tips | Sarstedt | ||
10 mL serological pipette | Appleton Woods | CC214 | |
10 μL low retention tips | Sarstedt | 70.1130.105 | |
13% sodium hypochlorite | Acros Organics | AC219255000 | |
15 mL centrifuge tubes | Fisher Scientific | 05-539-12 | |
2 L erlenmeyer flasks | Scientific Laboratory Supplies | FLA4036 | |
25 mL serological pipette | Appleton Woods | CC216 | |
300 μL low retention tips | Sarstedt | 70.765.105 | |
50 mL serological pipette | Appleton Woods | CC117 | |
5-Fluoro-2'-deoxyuridine 98% | Alfa Aesar | L16497.ME | |
9 cm sterile Petri dishes | Fisher Scientific | 11309283 | |
absolute ethanol | Vwr | 20821.33 | |
Agar | Sigma Aldrich | A1296 | |
C. elegans strain wild type | Supplied by CGC | N2 | C. elegans strain |
calcium chloride dihydrate | Sigma Aldrich | C3881 | |
cholesterol | Acros | 110190250 | |
dibasic sodium phosphate | Sigma Aldrich | S3264 | |
E. coli strain OP50 | Supplied by CGC | Op50 | E coli strain |
FBS10 Standard microscope | Meyer Instruments | KSC 410-1-100-1 | FBS10 Standard with Plate Base, 100/100 Trinocular Head and Flip zoom |
glass pipette 270 mm | Fisherbrand | FB50255 | |
Heraeus Multifuge X3R | Thermofisher scientific | 75004515 | |
Inoculating Spreaders | Fisher Scientific | 11821741 | |
LB medium capsules | MP biomedicals | 3002-031 | |
LDI – Laser Diode Illuminator | 89 North | ||
levamisole | Sigma Aldrich | 16595-80-5 | |
M4 multipette | Eppendorf | 4982000012 | |
magnesium sulphate | Sigma Aldrich | M7506 | |
monobasic potassium phosphate | Sigma Aldrich | P0662 | |
Multitron Standard shaking incubator | Infors HT | INFO28573 | |
Nalgene 1 L Centrifuge pots | Fisher Scientific | 3120-1000 | |
P10 pipette | Eppendorf Research Plus | 3123000020 | |
P1000 pipette | Eppendorf Research Plus | ||
P200 pipette | Eppendorf Research Plus | 3123000055 | |
pipeteboy 2 | VWR | 612-0927 | |
Polystyrene microbeads | Sigma Aldrich | MFCD00131491 | |
RC5C plus floor mounted centrifuge | Sorvall | 9900884 | |
Reusable ringed cytology slides | ThermoFisher Scientific | 22037242 | |
SK4005 zdIs5[Pmec-4GFP] | contract Driscoll lab | GFP expressed in touch neurons | |
sodium chloride | Sigma Aldrich | 13422 | |
Sodium hydroxide | Fisher Chemical | S/4880/53 | |
Tactrol 2 Autoclave | Priorclave | ||
Triton-X | Thermofisher scientific | 28313 | |
Tween 20 | Sigma Aldrich | 9005-64-5 | |
X-Light V2 Spinning Disk Confocal Unit | CrestOptics | ||
ZB4065 bzIs166[Pmec-4mCherry] | contract Driscoll lab | mCherry expressed in touch neurons | |
ZB4067 bzIs167[Pmec-4mitogfp Pmec-4mCherry4]; igIs1[Pmec-7YFP Pmec-3htt57Q128::cfp lin-15+] | contract Driscoll lab | Q128 expressed in touch neurons | |
ZB4509 bzIs166[Pmec-4mCherry]; bzIs168[Pmec-7LMP-1::GFP] | contract Driscoll lab | mitoROGFP expressed in touch neurons | |
ZB4528 bzIs166[Pmec-4mCherry]; zhsEx17 [Pmec-4mitoLS::ROGFP] | contract Driscoll lab | autophagy marker expressed in touch neurons | |
ZEISS Axio Vert.A1 | Zeiss |