Summary

α,β不飽和化合物及びアルキンの過硫酸促進ベンザネ化による水中の多官能ベンゼンの効率的な合成

Published: December 16, 2019
doi:

Summary

前例のない多官能化ベンゼンの合成に向けて、水中のα、β不飽和化合物およびアルキンの過硫酸促進金属遊離ベンベンゼレーションが報告されている。

Abstract

ベンゼンネーション反応は、環状の構成要素を構造的に変化したベンゼン骨格に変換する有効なプロトコルを表します。機能化ベンゼンに対する古典的かつ最近のアプローチにもかかわらず、水金属フリーの方法では依然として課題であり、多置換ベンゼン化合物の合成に使用されるツールのセットをさらに拡大する機会を表しています。このプロトコルは、α,β不飽和化合物およびアルキンのベンズネーションを探索し、前例のない機能的なベンゼン環を高収率で得るための操作的に簡単な実験的セットアップを記述する。過硫酸アンモニウムは選択の試薬であり、安定性および容易な処理として顕著な利点をもたらす。さらに、溶媒としての水の使用および金属の不在は、方法により持続可能性を付与する。乾燥剤の使用を回避する修正されたワークアップ手順は、プロトコルの利便性も向上します。製品の精製は、シリカのプラグのみを使用して行われます。基板範囲は現在、末端アルキンおよびα,β不飽和脂肪族化合物に限定されている。

Introduction

機能化ベンゼンは、合成有機化学1、2において最も採用されている前駆体である。医薬品、天然物、機能性有機材料の主流を示しています。多置換ベンゼン誘導体の構築に対する強力なアプローチが報告されており、その中でも芳香族求核剤または求電子置換3として十分に確立された方法、クロスカップリング反応4および有向金属5が一般的なアプローチである。それにもかかわらず、これらの戦略の広範な適用は、限られた基質範囲、過剰反応および再選択性の問題によって妨げられる可能性がある。

タンデムの循環反応は、原子経済的な方法で機能化ベンゼンを迅速に構築するための古典的な方法に非常に魅力的な代替手段を表す6,7,8.このフレームワーク内では、ベンゼンレーション反応は、非環状のビルディングブロックを貴重なベンゼン骨格に効果的に変換するための適切なプロトコルを表します。このクラスの反応は、様々な化学原料、メカニズムおよび実験条件9、10、11を特徴とする多目的な方法論である。

本研究の目的は、ベンズネーション反応のためのシンプルで実用的なプロトコルを開発し、前例のない機能化ベンゼンリングを生成することです。このあたり、安価な化学原料(α、β不飽和化合物、アルキン)を用いた水中の金属フリー、過硫酸媒介ベンサンジュの探索に取り組んでいます。

文献で報告された方法よりもいくつかの利点が指摘できる。金属のない変革には、持続可能な開発の要件を満たすために必要なすべての属性があります。ほんの少し言及するだけで、所望の製品から金属微量の高価で挑戦的な除去の必要はありません。反応は酸素と水分に敏感でなく、操作が容易になり、全体的なプロセスは通常安価です12.過硫酸塩は安定しており、取り扱いが容易で、副産物として硫酸塩のみを生成するため、廃棄物汚染最小限に抑えるグリーンケミストリーイニシアチブに勢いを加える。水は有機反応に適した緑色溶媒と考えられている:それは非毒性、不燃性であり、非常に低い臭いを有し、低コストで利用可能である。水不溶性有機化合物でさえ、「オンウォーター」14水性懸濁液を使用して採用することができ、これらの簡単な合成プロトコルは、長年にわたって注目を集めています。

当社の最適化された反応条件と簡単なワークアップ/精製手順により、さらなる機能化の機会を豊富に提供するいくつかの機能化ベンゼンリングにアクセスできます。

Protocol

注意: この手順で化学物質を使用する前に、材料安全データシート(MSDS)を参照してください。いくつかの試薬や溶媒が有毒、腐食性、または可燃性であるとして、安全メガネ、ラボコート、ニトリル手袋を含む適切な個人用保護具(PPE)を使用してください。ヒュームフードですべての反応を実行します。このプロトコルで使用される液体はマイクロピペットで転送される。 …

Representative Results

多置換ベンゼン(3b、図1)は、当社のプロトコルを用いて無色油(0.2741g、0.920mmol、収率92%)として単離した。構造および純度は、図2および図3に示す1Hおよび13CNMRスペクトルで評価することができる。中央ベンゼン環上の芳香族陽子(δ8.37及びδ7.72ppm)のピークを生成物の形成のための診断信号として用?…

Discussion

本明細書で報告される方法は、水中で多官能化ベンゼンを合成するための非常にシンプルで穏やかな実験的セットアップであると設計された。当社の条件下では、過硫酸アンモニウムを使用して製品の優れた収率を観察することができました。作りたての過硫酸塩水溶液を使用する必要があります。しかしながら、固体過硫酸アンモニウムはまた、収率の損失なしで採用す?…

Declarações

The authors have nothing to disclose.

Acknowledgements

フンダソン・デ・アンパロ・ア・ペスキサ・ド・エスタド・デ・サンパウロ(FAPESP、サンパウロ、ブラジル)の資金援助に感謝します(Grant FAPESP 2017/18400-6)。この研究は、クオルデナソン・デ・アペルフェイソアメント・デ・ペソアル・デ・ニヴェル・スーペリア – ブラジル (CAPES) – ファイナンスコード 001 によって一部資金調達されました。

Materials

Ammonium persulfate Vetec 276
Chloroform-D, (D, 99.8%) Sigma Aldrich 570699-50G
2-cyclohexen-1-one >95% Sigma Aldrich C102814-25ML
Ethyl Acetate, 99.9% Synth 01A1010.01.BJ ACS
Hexanes, 98.5% Synth 01H1007.01.BJ ACS
Phenylacetylene 98% Sigma Aldrich 117706-25ML
Silica Gel (SiO2) Fluka 60738-5KG pore size 60 Å, 35-70 μm particle size
Thin-layer chromatography plates Macherey-Nagel 818333 0.20 mm silica gel 60 with fluorescent indicator UV254

Referências

  1. Colacot, T. J. . New Trends in Cross-Coupling. Theory and Applications. , (2015).
  2. Hassan, J., Sévignon, M., Gozzi, C., Schulz, E., Lemaire, M. Aryl-Aryl Bond Formation One Century after the Discovery of the Ullmann Reaction. Chemical Reviews. 102 (5), 1359 (2002).
  3. Snieckus, V. Directed Aromatic Functionalization and references therein. Beilstein Journal of Organic Chemistry. 7, 1215-1218 (2011).
  4. Ashenhurst, J. Intermolecular oxidative cross-coupling of arenes. Chemical Society Reviews. 39 (2), 540-548 (2010).
  5. Reich, H. Role of Organolithium Aggregates and Mixed Aggregates in Organolithium Mechanisms. Chemical Reviews. 113 (9), 7130-7178 (2013).
  6. van Otterlo, W. A. L., de Koning, C. B. Metathesis in the Synthesis of Aromatic Compounds. Chemical Reviews. 109, 3743-3782 (2009).
  7. Zhou, P., Huang, L. B., Jiang, H. F., Wang, A. Z., Li, X. W. Highly Chemoselective Palladium-Catalyzed Cross-Trimerization between Alkyne and Alkenes Leading to 1,3,5-Trienes or 1,2,4,5-Tetrasubstituted Benzenes with Dioxygen. Journal of Organic Chemistry. 75, 8279-8282 (2010).
  8. Li, S., Wu, X. X., Chen, S. Base-promoted direct synthesis of functionalized N-arylindoles via the cascade reactions of allenic ketones with indoles. Organic and Biomolecular Chemistry. 17, 789-793 (2019).
  9. Maezono, S. M. B., Poudel, T. N., Lee, Y. One-pot construction of sterically challenging and diverse polyarylphenols via transition-metal-free benzannulation and their potent in vitro antioxidant activity. Organic and Biomolecular Chemistry. 15, 2052-2062 (2017).
  10. Shu, W. M., Zheng, K. L., Ma, J. R., Wu, A. X. Transition-Metal-Free Multicomponent Benzannulation Reactions for the Construction of Polysubstituted Benzene Derivatives. Organic Letters. 17, 5216-5219 (2015).
  11. Jiang, L., et al. Secondary amine-catalyzed [3 benzannulation to access polysubstituted benzenes through iminium activation. Synthetic Communications. 48, 336-343 (2018).
  12. Koening, S. G. . Scalable Green Chemistry. Case Studies from the Pharmaceutical Industry. , (2013).
  13. Backvall, J. E. . Modern Oxidation Methods. , (2004).
  14. Narayan, S., et al. “On Water”: Unique Reactivity of Organic Compounds in Aqueous Suspension. Angewandte Chemie International Edition. 44, 3275-3277 (2005).
  15. de Souza, G. F. P., Salles, A. G. Persulfate-Mediated Synthesis of Polyfunctionalized Benzenes in Water via Benzannulation of Alkynes and α,β-Unsaturated Compounds. Green Chemistry. , (2019).
  16. Prat, D., Wells, A., Hayler, J., Sneddon, H., McElroy, C. R., Abou-Shehada, S., Dunn, P. J. CHEM21 Selection Guide of Classical- and Less Classical-Solvents. Green Chemistry. 18, 288-296 (2015).
  17. Sheldon, R. A. Metrics of Green Chemistry and Sustainability: Past, Present, and Future. ACS Sustainable Chemistry & Engineering. 6, 32-48 (2018).

Play Video

Citar este artigo
de Souza, G. F. P., Salles, A. G. Efficient Synthesis of Polyfunctionalized Benzenes in Water via Persulfate-promoted Benzannulation of α,β-Unsaturated Compounds and Alkynes. J. Vis. Exp. (154), e60767, doi:10.3791/60767 (2019).

View Video