Here we describe a technique to quantify the barrier integrity of small intestinal organoids. The fact that the method is based on living organoids enables the sequential investigation of different barrier integrity modulating substances or combinations thereof in a time-resolved manner.
Organoids and three-dimensional (3D) cell cultures allow the investigation of complex biological mechanisms and regulations in vitro, which previously was not possible in classical cell culture monolayers. Moreover, monolayer cell cultures are good in vitro model systems but do not represent the complex cellular differentiation processes and functions that rely on 3D structure. This has so far only been possible in animal experiments, which are laborious, time consuming, and hard to assess by optical techniques. Here we describe an assay to quantitatively determine the barrier integrity over time in living small intestinal mouse organoids. To validate our model, we applied interferon gamma (IFN-γ) as a positive control for barrier destruction and organoids derived from IFN-γ receptor 2 knock out mice as a negative control. The assay allowed us to determine the impact of IFN-γ on the intestinal barrier integrity and the IFN-γ induced degradation of the tight junction proteins claudin-2, -7, and -15. This assay could also be used to investigate the impact of chemical compounds, proteins, toxins, bacteria, or patient-derived probes on the intestinal barrier integrity.
Integrity of the epithelial barrier is maintained by the apical junctional complex (AJC), which consist of tight junction (TJ) and adherence junction (AJ) proteins1. The polarized structure of the AJC is crucial for its function in vivo. Dysregulation of the AJC is present in various diseases and is suspected to be an important trigger of inflammatory bowel pathogenesis. Loss of intestinal barrier function represents the initiating event of the disease. The following translocation of commensal bacteria and inflammatory responses are the painful consequences2.
Various in vitro and in vivo models have been developed to investigate the regulation of the AJC. The Transwell assay is based on two-dimensional (2D) cell monolayers that were derived from tumor cell lines. These systems are good to assess by optical and biochemical methods and enable the analysis of many samples at the same time but lack many features of primary cells and the differentiation processes present in vivo. Investigating the barrier integrity is also possible in animal models. In terminal experiments, the effects of specific treatments in vivo on the permeability of the whole intestine can be quantified. However, these models require a large number of animals, and they do not allow detailed visualization of the underlying molecular processes. Nowadays improved 3D in vitro models are available that closely recapitulate cell differentiation processes, cell polarization, and represent the crypt-villus structure of the intestine3. The application of 3D intestinal organoids for functional analyses requires the adaptation of available methods from 2D models. Here we describe a model to investigate intestinal barrier integrity in living small intestinal mouse organoids. The assay was established to investigate the effect of IFN-γ on the barrier integrity and respective tight junction proteins8.
In contrast to the technique applied by Leslie4, Zietek5, or Pearce6, which measures fluorescence after removing lucifer yellow (LY) from the medium, our approach allows quantification of the luminal uptake of the fluorophore over time. Therefore, the result represents a dynamic uptake kinetic and our assay enables the application of additional stimuli or inhibitors during the course of the experiment. The fact that both assays measure the uptake from the outside basolateral side to the inside apical surface is in clear contrast to the situation in vivo. In a model described by Hill et al.7, this topic was explored. Upon microinjection of the fluorophore into the organoid’s lumen, the fluorescence was quantified. The direction of diffusion represents the direction present in vivo. The technical effort of microinjection clearly reduces the throughput of this method. In contrast to the model described here, the microinjection method enables the measurement of effects that require biological activation on the apical epithelial surface.
The organoid barrier integrity model presented here is based on live cell microscopy and enables the analysis of dynamic changes within the AJC regulation over time. The setup can be applied to test the pharmacological impact of substances inducing and inhibiting the integrity of the intestinal barrier. Furthermore, organoid-based models help reduce the number of animals used for pharmacological studies.
All steps were completed in accordance and compliance with all relevant regulatory and institutional animal care guidelines.
1. Plating of Organoids
2. OrganoidPermeability Assay
3. Data Analysis
To validate the application of 3D small intestinal mouse organoids as a model to quantify the effect of compounds regulating the intestinal barrier integrity, we applied IFN-γ. To do so, we isolated and cultured organoids derived from IFN-γ responsive wild type and IFN-γ-receptor-2 knockout mice, which do not respond to IFN-γ8. Upon treatment for 48 h with IFN-γ or PBS (control), all organoids were exposed to LY and imaged by confocal spinning disc live cell microscopy in 5 min intervals for a period of 70 min. The functional integrity of the intestinal barrier in this model resulted in exclusion of LY from the organoid's lumen while intraluminal accumulation of LY signified destruction of the TJ. The representative fluorescence microscopic images after 70 min of incubation with LY clearly demonstrate that intraluminal LY fluorescence was only visible in organoids from wild type animals treated with IFN-γ. In unstimulated (PBS) controls nor in organoids derived from knock out animals (IFN-γR2ΔIEC, Figure 1), no intraluminal LY fluorescence was present after 70 min.
The addition of EGTA causes an unspecific breakdown of the intestinal barrier integrity by sequestering TJ cofactors. This control was always utilized at the end of the experiment to demonstrate the ability of the respective organoid to take up LY (Figure 1). If no intraluminal LY fluorescence was detected upon EGTA treatment, the organoid was excluded from the experiment.
For the quantitative evaluation of the microscopic results, LY fluorescence was measured within the organoid's lumen and outside of the organoid. Relative intensity values were calculated (fluorescence inside/ fluorescence outside + inside) and are shown for each time point imaged. It is recommended to avoid imaging of organoids of varying sizes. We chose to focus on organoids with a diameter of 80 ± 30 µm (Figure 2). A schematic of the protocol with representative images is shown in Figure 3. Some major problems and troubleshooting techniques are shown and discussed in Figure 4.
Figure 1: Intestinal barrier integrity can be analyzed in mouse organoids. Intestinal organoids from IFN-γR2WT and IFN-γR2ΔIEC were cultured in the presence of IFN-γ for 48 h or left untreated. To investigate the integrity of the intestinal barrier, LY (457 Da) was added and confocal fluorescent images were captured in 5 min intervals for a total of 70 min. Representative images at time point 0 min, 70 min, and after addition of EGTA are shown (green = Lucifer yellow; Scale bar = 20 µm). This figure has been modified from Bardenbacher et al.8. Please click here to view a larger version of this figure.
Figure 2: Small intestinal organoid barrier integrity model provides quantitative results. (A) LY fluorescence was determined inside and outside the organoid. Relative intensity values were calculated (inside/fluorescence outside + inside) relative to the initial relative intensity + SEM and are shown for each time point. (B) Size distribution of analyzed organoids. To reduce the standard deviation and errors due to changes in the surface-to-volume ratio, we only analyzed organoids with a diameter of 80 ± 30 µm. Mean values of the respective organoid diameters are shown + SD (IFN-γR2WT, n = 20; IFN-γR2ΔIEC, n = 18). The mean diameter values did not vary significantly between the different groups (one-way ANOVA). (C) The permeability of the organoids was determined 70 min after the addition of LY. It was defined by dividing the intraluminal fluorescence intensities after 70 min by the minimal relative fluorescence intensities measured during the observation period. Each bar represents mean values + SD, measured in 10 organoids derived from two independent experiments (IFN-γR2WT, n = 20; IFN-γR2ΔIEC, n = 18). IFN-γ significantly increased the LY uptake only in IFN-γR2WT organoids. ***p-value <0.001 in the Student’s t-test. This figure has been modified from Bardenbacher et al.8. Please click here to view a larger version of this figure.
Figure 3: Schematic protocol with representative images. (A) Schematic description of the main steps of the protocol. (B) Representative pictures of the major steps of the protocol. (B1) DIC microscopy image of a central slice through a suitable organoid that was selected for permeability analysis. The dotted line represents a width of 89 µm. (B2) Fluorescence microscopy picture of the same organoid in (B1) before adding LY. The image shows the autofluorescence of the organoid. (B3) An organoid 70 min after the addition of LY. The depicted organoid shows no uptake of LY and therefore an intact barrier function. Dotted lines show the ROIs for further analysis. The inner lumen of the organoid and three representative areas around the organoid are marked. (B4) An organoid after the addition of EGTA. The organoid is usable for further analysis because it shows LY uptake after the EGTA treatment. Please click here to view a larger version of this figure.
Figure 4: Troubleshooting of common problems. (A) Table with common problems and solutions. (B) Exemplary images. (B1) DIC image of a large multibranched organoid that is not suitable for this assay. (B2). Confocal image of an organoid displaying high autofluorescence before LY was added to the medium. The organoid was excluded from quantification. (B3) Confocal image of an organoid displaying low autofluorescence before LY was added to the medium. The fluorescence was quantified in this case. (B4) Organoid showing no LY uptake from the medium 30 min after addition of EGTA and therefore excluded from quantification. Please click here to view a larger version of this figure.
This assay offers a technique to study the intestinal barrier integrity within living organoids. The whole assay is based on small intestinal mouse organoids and confocal live cell microscopy. Therefore, it is mandatory to practice the proper handling of organoids in advance. Upon isolation, organoids can be routinely split and stored by cryofreezing3,9. For this assay we recommend splitting the organoids 48 h before the treatment is started. This period gives the organoids the chance to totally close and form spherical structures. The seeding of the organoids for the experiment is a critical step within the assay. To reduce individual handling variations, we recommend a routine procedure for the seeding process. This step is crucial, and a routine handling protocol clearly reduces experimental variations.
During the seeding procedure (step 1.7) the organoids get fragmented by repetitive passaging through a standard 10 μL pipette tip. The pore size of this product varies from company to company. This procedure should be practiced in advance, and the result should always be checked by phase contrast microscopy. Once the organoids obtained reach the desired size, do not change the procedure.
The seeding of the organoids must be optimized and adapted for the available microscopic setup. To be able to culture and image organoids for at least 48 h, an incubated microscope chamber is absolutely required. Choose a chambered coverslip that matches your requirements. When seeding the organoids, make sure to concentrate the organoids on the coverslip surface. This is possible by keeping the chambered coverslip on an ice pack for 5 min after placing the cell matrix-organoid suspension. This step is important to increase the quality of confocal live cell imaging. The axial resolution and working distance of confocal microscope lenses is especially limited. The closer you bring the sample to the lens, the better you can image it and the less laser energy is needed to excite the LY fluorescence.
Phototaxis is an important issue when it comes to live cell microscopy. Within this assay we exclude this option. A functional AJC is visible by exclusion of LY from the organoid’s lumen (Figure 1, PBS). The addition of EGTA at the end of the experiment causes sequestering of bivalent ions, which are cofactors for AJC proteins. LY is excluded from the organoid's lumen only in vital organoids with a functional AJC complex. In general, fluorescent molecules can be used to measure the integrity of the intestinal barrier. We chose LY instead of other commonly used fluorophores such as fluorescein labeled dextran because those are transported transcellularly in intestinal cells from the basal to the apical compartment9. We also chose LY because of its small size. LY has a molecular weight of 457 Da and therefore facilitates the investigation of the barrier permeability for small molecules. The fluorescent molecule has to be chosen depending on the scientific question investigated. Because phototoxic AJC defects are present, laser excitation energy has to be reduced or the imaging interval extended. The optimal confocal imaging technique for this assay is spinning disc microscopy. Respective instruments enable confocal imaging with short exposure time at low laser power.
Different models have already been developed to study intestinal barrier integrity in vitro. While the use of assays based on cell line monolayers or experiments in vivo are declining, organoid-based methods increasing. In contrast to methods previously described4,5,6,7, our method allows quantification of barrier function over time. This allows exposure of the organoids to additional stimuli over the course of the experiment. Here we apply EGTA as a second stimulus at the end of the experiment as a positive control.
In contrast to the situation in vivo, in our assay LY is added into the medium and penetrates the organoid from the outside basolateral epithelial side towards the inside apical lumen. The LY is small and is only used to visualize the tightness of the intestinal barrier. Molecules and stimuli that modulate the epithelial layer at the apical surface need to be injected into the organoid's lumen7. To reduce the experimental effort and to be able to measure the barrier integrity of many organoids at the same time, we chose to apply the fluorescent dye from the outside.
We used the assay to investigate the function of IFN-γ on the tight junction of small intestinal mouse organoids. The fact that we were able to analyze the barrier integrity in living organoids offers future possibilities to apply this technique to describe inhibitors for the inflammation-induced breakdown of the intestinal barrier. Substances that counteract the impaired barrier function caused by IFN-γ could be candidates for the treatment of inflammatory bowel diseases, in which impaired barrier function is one of the pathogenic factors10.
The authors have nothing to disclose.
This work was supported by grants from the German Research Foundation (DFG) [KFO257, project 4 to M.S. and project 1 to C.B.; FOR2438, project 2 to M.S. and E.N. and project 5 to C.B.; SFB1181 project C05 to C.B.; TRR241, project A06 to N.B.L. and M.S., project A03 to C.B., BR5196/2-1 to N.B.L. and BE3686/2 to C.B.]; the Interdisciplinary Center for Clinical Research (IZKF) of the Clinical Center Erlangen (to M.S., E.N., and M.B.), the W. Lutz Stiftung (to M.S.) and the Forschungsstiftung Medizin of the Clinical Center Erlangen (to M.S.). The present work was performed in (partial) fulfillment of the requirements for obtaining the degree Dr. Med. of Marco Bardenbacher.
48-well culture plate | Thermo Fisher Scientific | #150687 | |
8-well chamber slides | Ibidi | #80826 | |
96-well culture plate | Greiner Bio-One | #655101 | |
Axio Observer.Z1 – spinning disc | Zeiss | excitation laser 488 nm / emission filter 525/25 | |
Bovine serum albumin | Sigma-Aldrich | A3059-100G | |
Cell strainer | Falcon | 352350 | |
Centrifugation tube 15 ml | Thermo Fisher Scientific | 11507411 | |
Centrifugation tube 50 ml | Thermo Fisher Scientific | 10788561 | |
EDTA | Sigma-Aldrich | 431788-25g | |
EGTA | Sigma-Aldrich | 431788 | |
Lucifer Yellow CH dilithium salt | Sigma-Aldrich | L0259 | |
Matrigel, growth factor reduced, phenol red free | Corning | 356231 | Cell matrix solution |
Mice | The Jackson Laboratory | M. musculus C57/Bl6 | |
Microscope coverslip | 24×60 mm | ||
Organoid Growth Medium mouse | Stemcell Technologies | #06005 | |
Phosphate buffered saline | Biochrom | L182-05 | |
Recombinant murine IFN-γ | Biolegend | Cat#575304 |