Neural stem/progenitor cells exhibit various expression dynamics of Notch signaling components that lead to different outcomes of cellular events. Such dynamic expression can be revealed by real-time monitoring, not by static analysis, using a highly sensitive bioluminescence imaging system that enables visualization of rapid changes in gene expressions.
Notch signaling regulates the maintenance of neural stem/progenitor cells by cell-cell interactions. The components of Notch signaling exhibit dynamic expression. Notch signaling effector Hes1 and the Notch ligand Delta-like1 (Dll1) are expressed in an oscillatory manner in neural stem/progenitor cells. Because the period of the oscillatory expression of these genes is very short (2 h), it is difficult to monitor their cyclic expression. To examine such rapid changes in the gene expression or protein dynamics, fast response reporters are required. Because of its fast maturation kinetics and high sensitivity, the bioluminescence reporter luciferase is suitable to monitor rapid gene expression changes in living cells. We used a destabilized luciferase reporter for monitoring the promoter activity and a luciferase-fused reporter for visualization of protein dynamics at single cell resolution. These bioluminescence reporters show rapid turnover and generate very weak signals; therefore, we have developed a highly sensitive bioluminescence imaging system to detect such faint signals. These methods enable us to monitor various gene expression dynamics in living cells and tissues, which are important information to help understand the actual cellular states.
The mammalian brain is composed of a large number of various types of neurons and glial cells. All cells are generated from neural stem/progenitor cells (NPCs), which first proliferate to expand their numbers, then start to differentiate into neurons, and finally give rise to glial cells1,2,3,4,5. Once cells have differentiated into neurons, they cannot proliferate or increase their numbers, and, therefore, the maintenance of NPCs until later stages is important. Notch signaling via cell-cell interactions plays an important role in maintaining NPCs6,7. Notch ligands interact with the membrane protein, Notch, on the surface of neighboring cells and activates the Notch protein. After activation, proteolysis of Notch protein occurs, thereby releasing the intracellular domain of Notch (NICD) from the cell membrane into the nucleus8,9,10. In the nucleus, NICD binds to the promoter regions of Hes1 and Hes5 (Hes1/5) and activates the expression of these genes. Hes1/5 repress the expression of the proneural genes Ascl1 and Neurogenin1/2 (Neurog1/2)11,12,13,14. Because proneural genes induce neuronal differentiation, Hes1/5 play essential roles in maintaining NPCs. Furthermore, as proneural genes can activate the expression of the Notch ligand Delta-like1 (Dll1), Hes1/5 also repress the expression of Dll1. Therefore, the expression of Dll1 leads to neighboring cells being negative for Dll1 via Notch signaling. In this way, cells inhibit adjacent cells from following their same fate, a phenomenon known as the lateral inhibition8. In the developing brain, lateral inhibition plays a role in generating various different cell types.
Real-time imaging at the single cell level reveals dynamic expressions of the components of Notch signaling in NPCs15,16,17. Notch signaling activates the expression of Hes1, but Hes1 protein binds to its own promoter and represses its own expression. Furthermore, Hes1 is an extremely unstable protein, that is degraded by the ubiquitin-proteasome pathway; therefore, the repression of its own promoter is only short lived and then the transcription starts again. In this way, the expression of Hes1 oscillates at both the transcription and translational levels in a 2 h cycle18. The oscillatory expression of Hes1, in turn, induces the oscillatory expression of the downstream target genes, such as Ascl1, Neurog2, and Dll1, via periodic repression15,16,17,19. While proneural genes can induce neuronal differentiation, their oscillatory expression is not sufficient for neuronal differentiation; rather their sustained expression is essential for the neuronal differentiation. The oscillatory expression of proneural genes is important for maintaining NPCs rather than for inducing neuronal differentiation14,15,16. The expression of Dll1 oscillates at both the transcription and translational levels during various morphogenesis, such as neurogenesis and somitogenesis. The dynamic expression of Dll1 is important for the normal morphogenesis and steady expression of Dll1 induces defects in neurogenesis and somitogenesis17. These findings demonstrate the important function that the dynamics of gene expression and protein kinetics have on the regulation of various developmental events (i.e., different expression dynamics produce different outputs in cellular behaviors).
To analyze the dynamics of Notch signaling, the static analysis of tissues and cells are insufficient because they are constantly changing. Real-time imaging of single cells is a powerful tool to reveal the dynamics in gene expression. The dynamic expression of Notch signaling molecules undergo rapid cyclic responses in the period of 2-3 h. This rapid periodic expression presents two difficult problems for the real-time monitoring: (1) the expression of the molecules is suppressed to low levels, and (2) rapid turnover requires fast-response reporters. To overcome these problems, we previously developed a bioluminescence real-time imaging method20. Because the bioluminescence reporter has a higher sensitivity and shorter maturation time than fluorescent reporters, this strategy enables us to monitor the rapid dynamics in living cells. Using real-time visualization, we found that more genes exhibited dynamic expression than we had previously thought. In addition, the number of reports showing expression and protein dynamics in living cells and the significance of these dynamics in various biological events has increased, suggesting a fundamental role of the dynamics in gene expressions21,22.
In this report, we describe a way to visualize the expression of the Notch ligand Dll1 in NPCs in both dissociated cultures and in cortical slice cultures. To monitor the dynamics of Dll1 transcription at single cell levels, we generated dissociated cultures of NPCs derived from the embryonic telencephalon of transgenic mice carrying pDll1-Ub-Fluc reporter, a Dll1 promoter-driven destabilized luciferase reporter. To monitor Dll1 protein dynamics in vivo, we introduced the Dll1-Fluc fusion reporter into NPCs in the cortex and visualized the expression of the reporter in NPCs in cortical slice cultures. Real-time imaging enabled us to capture the various features of gene expression and protein dynamics in living cells at high temporal resolution.
All the procedure including animal subjects have been approved by Institutional Animal Care and Use Committee at the institute for Frontier Life and Medical Sciences, Kyoto University.
1. Bioluminescence reporters
NOTE: The luciferase reporter is suitable for measuring the rapid dynamics of promoter activity by fusing the degradation signal. Moreover, the luciferase fusion reporter enables monitoring of the protein dynamics in the single cell. Both types of reporters are available for mono-layer culture (dissociation culture) and tissue culture (slice culture) experiment.
2. Bioluminescence imaging system
3. Neural Stem/Progenitor Cell (NPC) dissociation cultures
4. In utero electroporation
NOTE: This is performed for the introduction of Dll1-Fluc reporter into the neural progenitor cells.
5. Preparation of slice cultures of the developing cortex and visualization of luciferase reporter expression in the cortical slices
6. Image processing and analysis
Expressions of the genes Hes1/7 exhibit 2 h oscillation cycle in various cell lines and during somitogenesis. Furthermore, the period of oscillation is very short and both their mRNAs and proteins are extremely unstable with the half-lives of around 20 min. If using a slow response reporter, we cannot trace such rapid dynamics, and if using a stable reporter, it gradually accumulates while the gene expression oscillates. Thus, the reporter must be rapidly degraded to monitor the rapid turnover of such cyclically expressed genes. To overcome these problems, we used luciferase reporter to monitor the dynamic expression of oscillators. Because the bioluminescence reporter has a short maturation time and high sensitivity, it enables us to monitor the rapid dynamics of ultradian oscillators. Like a fluorescent reporter, the luciferase reporter can monitor the expression dynamics of a protein by being fused to the gene coding sequence (Figure 1A, Figure 2E and Figure 3D). Luciferase-fused gene products exhibit the same expression, turnover and translocation kinetics in cells as do the endogenous proteins. Furthermore, to monitor the promoter activity of the oscillating gene Dll1, we used ubiquitinated luciferase, a destabilized luciferase reporter (Figure 1A and Figure 3A)23, whose half-life is about 10 min20. Using various types of luciferase reporters, we generated transgenic mice or knocked-in mice to obtain stable expression of the reporter in NPCs during neurogenesis17. To visualize reporter expression at single cell levels in tissue culture, the scattered introduction of reporter is preferable. Thus, we used transient transfection of the reporter gene into NPCs via in utero electroporation (Figure 2F-H). The luciferase reporter system has been used in the field of circadian rhythms to monitor the dynamic expressions of clock genes for a long period (e.g., 1 week), suggesting that luciferin (D-luciferin), the substrate of the firefly luciferase enzyme, is very stable and has no toxicity for living cells24,25. We usually use luciferin in concentrations of 1 mM in the media, which is sufficient for the overnight live-cell imaging. Furthermore, the microscope-based imaging system enables us to acquire the multi-dimensional images, bright field images, fluorescence images and chemiluminescence images (Figure 2F-H and Figure 3E).
Using these conditions, we visualized the expressions of various ultradian clock genes, including Hes1, Ascl1, Neurog2 and Dll1 (Figures 2 and Figure 3). Representative results are shown in Figure 3. The reporter of Dll1 promoter activity exhibited oscillatory expression in NPCs derived from the telencephalon of Dll1-Ub-Fluc reporter mice. The destabilized luciferase reporter (Figure 3A) indicated sharp up and down regulation of the expression of promoter activity (Figure 3B,C). In this case, single neural progenitor cells displayed an approximately 2.5 h oscillation cycle with various amplitudes over the course of 13 h (Figure 3C). The rapid response luciferase reporter enables us to capture the transmission dynamics of Notch signaling between two living cells (Figure 3D-F and Supplemental Movie S1). We prepared two types of DNA mixtures: (1) Hes1 promoter reporter (pHes1-Ub-luc) and EGFP expression vector, and (2) Dll1 protein reporter (Dll1-Luc) and mCherry expression vector and transfected them into NPCs separately. Then we collected the two types of cells and co-cultured to measure the expression of reporters in living cells. Representative results are shown in Figure 3E,F. Adjacent EGFP positive cells carrying Hes1 reporter and mCherry positive cells expressing Dll1 protein reporter contacted with each other during observation. Hes1 reporter expression in a green cell seemed to start about 60 min after two cells contact (Figure 3E,F). This suggested that the time delay for transmission of Notch signaling between adjacent cells was about 1 h. Furthermore, during signal transmission, Dll1 protein expression showed dynamic translocation in a red cell (Figure 3E).
Figure 1: Dissection of the embryonic mouse brain. (A) The structure of luciferase reporters, Dll1 promoter reporter and Dll1 protein reporter. (B) Procedure of dissection. (a) The lateral view of a mouse embryo. (b) Cut off the head along with the dotted line. (c) Remove the epidermis and cartilage from the gap between the telencephalon and midbrain. (d) Cut the surrounding tissue along the midline between the right and left hemispheres. (e) Remove the tissue from the center break to both sides. (f) The telencephalon and the midbrain after removal of the surrounding tissue. (g) Separate the telencephalon (tel), midbrain (mid) and olfactory bulb (OB). (h) Cross section of the telencephalon, shown in dotted line in (g). (i) Remove the meninges surrounding the surface of the telencephalon. (j) Separate the telencephalon into two parts: medial and lateral part. (k) Cut the border of the cortex and ganglionic eminence (GE). (l) Dorso-lateral part of the cortex is used for dissociation culture. (C) The brain at embryonic day 14 (E14), consisting of the left (a) and right (b) hemispheres of the telencephalon and the midbrain (c). (D) The telencephalic hemispheres separated from the midbrain. (E) One dissected hemisphere of the telencephalon: the ventrolateral part of the telencephalon including the ganglionic eminences (d), the dorsolateral part of the telencephalon used for dissociated cultures and slice cultures (e), the medial part of the telencephalon (f) and meninges covering the surface of the brain (g). Please click here to view a larger version of this figure.
Figure 2: Making the cortical slices of the embryonic telencephalon and visualizing Dll1 protein dynamics in the cortical slice cultures. (A) Checking the expression of EGFP using fluorescence stereoscopic microscope. Red arrow shows the region of the cortex expressing EGFP. The left hemisphere (a), the right hemisphere (b) and the midbrain (c). (B) Dotted lines indicate the outlines of the brain regions shown in (A). (C) Dissected cortex of the dorsolateral telencephalon. White arrowheads indicate the cut edges. (D) Cortical slices of the dorso-lateral telencephalon. (E) Gene structures of reporters for visualizing Dll1 protein dynamics in NPCs. The Dll1 protein reporter, Dll1-Fluc (upper) were introduced into NPCs with an EGFP expression vector (lower) to monitor the morphology and migration of cells in the cortical slices. (F-H) Three-dimensional images of bright-field (F), GFP expression (G), and bioluminescence (H) in the cortical slice. The bioluminescence imaging system allowed to trace the expressions of luciferase and fluorescence reporter simultaneously. Scale bars: 200 µm. Please click here to view a larger version of this figure.
Figure 3: Representative data for visualization and analysis of the dynamic expression of the Dll1 gene in NPC culture. (A) The reporter construct for visualizing Dll1 expression at the transcriptional level, using a destabilized luciferase reporter (Ub-luciferase, ubiquitinated luciferase). (B) Visualization of the expression of Dll1 in a single NPC with a bioluminescence reporter. The numbers in the panel show the peak points of the oscillatory expression of Dll1 corresponding to the numbers in panel C. (C) A time course plot of the bioluminescence the dissociated NPC shown in (B), exhibiting the dynamic expression of Dll1. (D-F) Visualization of the expression of Hes1 promoter reporter and Dll1 protein reporter expressed in the neighboring cells. (D) The structure of Hes1 promoter activity reporter (pHes1-Ub-luc) and Dll1 protein reporter (Dll1-Luc). (E and F) The EGFP positive cell carrying Hes1 reporter (Cell1) and the mCherry positive cell carrying Dll1 protein reporter (Cell2) were co-cultured and the luminescence from both types of reporters were measured. The expression of Hes1 reporter in the green cell (cell1) seemed to start about 60 min after the two cells contacted. Please click here to view a larger version of this figure.
Supplemental Movie S1: Visualization of the expression of Hes1 promoter reporter and Dll1 protein reporter expressed in the neighboring cells, related to Figure 3D-3F. Please click here to view this video. (Right-click to download.)
The components of Notch signaling show oscillatory expressions in synchrony during somitogenesis but out of synchrony during neurogenesis, leading to the difficulties in capturing the expression dynamics by static analysis in the latter case. Thus, real-time monitoring is required to reveal the expression dynamics of Notch signaling components, such as Hes1 and Dll1. Because the periods of the expressions of Hes1 and Dll1 oscillations are extremely short, approximately 2-3 h, rapid response and unstable reporters are required for monitoring their expression dynamics. For this purpose, we have developed the bioluminescence reporter and imaging system. The bioluminescence reporter luciferase shows rapid maturation kinetics and high sensitivity to trace the rapid turnover of such cyclic gene expressions. The rapid turnover of reporters leads to very faint signals generated. To detect such faint signals produced by the bioluminescence reporters, we use an optimized bioluminescence imaging system, including a high sensitivity, water-cooled CCD camera with an ultra-low readout speed (50 kHz), which reduces the noise to a minimum. Furthermore, a high numerical aperture (N.A.) objective lens enables us to collect the light released from the destabilized luciferase reporter to the fullest. To obtain a higher sensitivity we usually use higher binning (e.g., 2 x 2, 4 x 4, 8 x 8) and keep the shutter to open for a long time (e.g., 5-20 min). Because the signal from the luciferase reporters is extremely faint, the interference of light from the environment also presents a problem in detecting the faint signal: thus, the microscope room must be completely dark. This system enables us to measure the dynamic expressions of Hes1 and Dll1 genes in NPCs in both transcriptional and protein levels (Figure 3). In addition, we can visualize the protein dynamics of intracellular translocation with luciferase fused protein reporters. Furthermore, using the rapid response luciferase reporter, we can capture the transmission dynamics of Notch signaling and measure the time delay for signal transmission between two living cells (Figure 3D-F and Supplemental Movie S1). Moreover, the combination of promoter reporter (Ub-luciferase reporter) and protein reporter (luciferase fusion) of a single gene enables us to measure the time delay between transcription and translation of the gene. In this way the multiple imaging of various kinds of luminescence reporters and fluorescence reporter is available to measure the time delay/rate for biochemical reactions.
Real-time monitoring of gene expressions at single cell resolution has revealed that there are variations in expression dynamics of the same gene. Some cells express Dll1/Neurog2 in oscillatory manner, but others show sustained patterns. Furthermore, the different expression dynamics (oscillatory versus steady) induce different outputs in the state of cells. What does appear to be clear is that different expression dynamics influence cell behaviors in different ways, suggesting that the expression dynamics encodes more information21,22,26,27,28,29,30,31,32. The static analyses cannot capture the dynamics in gene expression, and real-time analyses are required for understanding biological phenomena to reveal the expression dynamics in cellular events. The approach that we introduce here can monitor the dynamics of ultradian oscillators during neural development at high temporal resolution. Using this method, we found that many more genes are dynamically expressed than we had previously thought, and we can trace not only the dynamics of protein expression but also the dynamics in protein localization in the cell at high temporal resolution. Such dynamic expression patterns might have biological significances that are yet to be elucidated.
Bioluminescence reporters have a great advantage in temporal resolution and low toxicity to living cells compared with fluorescence reporters33. However, in contrast to the color variations in fluorescent reporters, there are only a few colors in bioluminescence reporters, imposing a limitation on the number of genes that can be monitored simultaneously. Nevertheless, increasing numbers of variable luciferase are being isolated and cloned from various creatures34,35, and using such a variety of luciferases, we will be able to simultaneously trace multiple gene expression dynamics in a single cell at high temporal resolution. The molecular size of firefly luciferase is larger than fluorescence reporters, which presents some difficulties in constructing reporter-fused proteins to monitor the protein dynamics, but recently, a new, smaller and brighter luciferase has been cloned36, which would allow us to visualize the protein dynamics easier than ever. A growing number of reports have recently showed different types of dynamics in gene expression and protein translocation in various biological events21,22,26,27,28,29,30,31,32. Analyses of such dynamics in spatiotemporal regulation using a real-time monitoring system would be increasingly important to capture the actual states of cells and reveal the regulation of cellular systems.
The authors have nothing to disclose.
We thank Yumiko Iwamoto for supporting the production of the video. We are also grateful to Akihiro Isomura for discussion and supports of image analysis, Hitoshi Miyachi for technical supports for generation of transgenic animals, Yuji Shinjo (Olympus Medical Science), Masatoshi Egawa (Olympus Medical Science), Takuya Ishizu (Olympus Medical Science) and Ouin Kunitaki (Andor Japan) for the technical support and discussions of the bioluminescence imaging system. This work was supported by Core Research for Evolutional Science and Technology (JPMJCR12W2) (R.K.), Grant-in-Aid for Scientific Research on Innovative Areas (MEXT 24116705 for H.S. and MEXT 16H06480 for R.K.), Grant-in-Aid for Scientific Research (C) (JSPS 18K06254) (H.S.), Takeda Foundation (R.K. and H.S.), and Platform for Dynamic Approaches to Living System from the Ministry of Education, Culture, Sports, Science and Technology, Japan.
Bioluminescence Imaging System | |||
Chilled water circulator (chiller) | Julabo | Model: F12-ED | |
Cooled CCD camera | Andor Technology | Model: iKon-M 934 | |
Incubator system | TOKAI HIT | Model: INU-ONICS | |
Inverted microscope | Olympus | Model: IX81 | |
Inverted microscope | Olympus | Model: IX83 | |
LED illumination device | CoolLED | Model: pE1 | |
MetaMorph | MOLECULAR DEVICES | Model: 40000 | |
Mix gas controller | Tokken | Model: TK-MIGM OLO2 | |
Objective lens | Olympus | Model: UPLFLN 40X O | |
Preparations for Dissection | |||
Dissection microscope | Nikon | Model: SMZ-2B | |
Fluorescence stereoscopic microscope | Leica | Model: MZ16FA | |
Fine forceps | DUMONT | INOX No.5 | |
Scissors, Micro scissors | |||
Forceps | |||
Ring-shaped forceps | |||
10-cm plastic petri dish | greiner | 664160-013 | |
35-mm plastic petri dish | greiner | 627160 | |
PBS | Nacalai Tesque | 14249-24 | |
DMEM/F12 | invitrogen | 11039-021 | |
Reagents for NPC dissociation culture | |||
B27 supplement | invitrogen | 12587-010 | |
bFGF | invitrogen | 13256-029 | Stock solution: 1 μg/ml in 0.1% BSA/PBS |
D-luciferin | Nacalai Tesque | 01493-85 | Stock solution: 100mM in 0.9% saline |
DNase | Worthington Biochemical Corporation | LK003172 | Stock solution: 1000U/ml in EBSS |
EBSS | Worthington Biochemical Corporation | LK003188 | |
Glass bottom dish | IWAKI | 3910-035 | |
N2 supplement (100x) | invitrogen | 17502-048 | |
N-acetyl-cystein | Sigma | A-9165-25G | |
Papain | Worthington Biochemical Corporation | LK003178 | Stock solution: 7U/ml in EBSS |
Penicillin/Streptmycine | Nacalai Tesque | 09367-34 | |
Poly-L-lysine | Sigma | P-6281 | 40 mg/ml in DW |
Preparations for in utero electroporation | |||
50-ml syringe | TERUMO | 181228T | |
Electrode | Neppagene | 7-mm | |
Electroporator | Neppagene | CUY21 EDIT | |
Forceps | |||
Gauzes | Kawamoto co. | 7161 | |
Micro capillary | Made in-house | ||
PBS | Nacalai Tesque | 14249-24 | |
Pentbarbital | Kyoritsuseiyaku | Somnopentyl | |
Ring-shaped forceps | |||
Scissors, Micro scissors | |||
Suture needle | Akiyama MEDICAL MFG. CO | F17-40B2 | |
Xylazine | Bayer | Seractal | |
Preparations for Slice culture | |||
10-cm plastic petri dish | greiner | 664160-013 | |
35-mm plastic petri dish | greiner | 627160 | |
Culture insert | Millipore | PICM01250 | |
DMEM/F12 | invitrogen | 11039-021 | |
Fetal Bovine Serum | Sigma | 172012-500ML | |
Fine forceps | DUMONT | INOX No.5 | |
Forceps | |||
Horse Serum | Gibco | 16050-122 | |
Micro surgical knife | Alcon | 19 Gauge V-Lance | |
Multi-gas incubator | Panasonic | MCO-5MUV-PJ | |
N2/B27 media | Made in-house | ref. NPC dissociatioin culture | |
PBS | Nacalai Tesque | 14249-24 | |
Ring-shaped forceps | |||
Scissors, Micro scissors | |||
Silicon rubber cutting board | Made in-house |