The goal of the protocol is to guide researchers in conducting experiments that are intended to measure changes in self-reported emotional response and heart rate variability following art making with different materials. The protocol can easily be adapted for use in a variety of behavioral conditions and activities.
This protocol enables the examination of psychological and physiological responses to different types of behavioral engagements. Specifically, in this study example, the emotional response and changes in heart rate variability are examined in response to artmaking with three different art materials that vary in their levels of fluidity. This protocol can be adapted to examine other types of behavior or engagement in artmaking with other materials. There are several benefits to using this protocol. Firstly, the order randomization of the materials improves the probability that the response measured is associated with its qualities and not the order of presentation. Secondly, the continuous measuring of electrocardiogram enables the examination of changes in heart rate variability after engagement with each art material and changes that might occur during the artmaking itself. The advantages of this protocol should be considered with their limitations. The music listening is before each art making session; thus, the return to baseline can only be measured in the first two conditions. The return to baseline provides information on how fast individuals recover after response to working with each of the materials. Furthermore, a more liquid material instead of gouache paint with a brush, such as finger paints, provides more difference between materials. Finally, this protocol can be adapted to specific research needs.
The purpose of this protocol is to examine the physiological and emotional response to artmaking in different conditions. In this case, the difference in response to art making with three different art materials varying in levels of fluidity is examined. The rationale behind the development of this experiment is to provide support for theories of art therapy claiming that artmaking with more fluid art materials is related to enhancing emotional expression1. Heart rate variability (HRV) in general, and respiratory sinus arrythmia (RSA) specifically, is indicative of emotional engagement and regulation2,3. In this study example, the order of the art materials used are randomized to control for an order effect. There are no other studies with this study design found.
The advantage of this method is that the ongoing measurement of heart rate variability (HRV) enables the examination of the physiological response to artmaking during the art making itself and it is noninvasive. This is in opposition to measuring bio-markers in blood or saliva following art making, which is important and relevant, but can be challenging to time accurately and requires uncomfortable (drooling in to a tube) or invasive (providing a blood sample) collection methods4.
This protocol can be adapted to measure response to a variety of behavioral activities, and art making with different materials. To do so, replace the artmaking with three materials with the desired behaviors to be examined. It is important to make sure that most elements of the behaviors being examined are similar other than the quality of the behavior being examined (i.e., the liquidity of the art material). Figure 1 is a flow chart of the experiment.
This study was conducted with the approval of the Faculty of Social Welfare & Health Sciences at the University of Haifa, ethics committee. Informed consent was obtained, and research was performed in compliance with Helsinki guidelines for human welfare.
NOTE: The research is conducted at a table, using art materials and a portable, wireless and non-invasive electrocardiogram (ECG) recording device.
1. Participant selection
2. Experimental protocol
3. Data analysis
As mentioned above, the CMetX software provides several matrices of HRV. Here, the RSA measure, was calculated for each participant per each experimental condition. Figure 5 depicts mean RSA values (±SE) for the three artmaking tasks and their preceding resting periods. A within subjects ANOVA revealed a statistically significant main effect for artmaking (F(1,49) = 26.155, p < .001), with a large effect size (ηp2 = .348), which can be intuitively interpreted as thirty five percent of the variability of RSA explained by artmaking (compared to resting). A statistically significant interaction (F(2,98) = 5.965, p = .004, ηp2 = .109) indicated that the change in mean RSA levels was dependent on the art material. Pairwise comparisons (with a Sidak adjustment for multiple comparisons) demonstrated a significant change in mean RSA during artmaking with oil pastels (t(49) = 5.51, p < .0005, Cohen's D = 0.475) or gouache (t(49) = 3.63, p = .001, Cohen's D = 0.195) but not during drawing with pencil (t(49) = 1.40, p = .168, Cohen's D = 0.105).
Figure 5: RSA at rest and during artmaking. Please click here to view a larger version of this figure.
In addition to heart rate variability, the three self-reported emotional response measures of the SAM5 visual analogue scale were used to estimate whether there were differences in the emotional responses to the various art materials. Mean (±SD) values of the valence, arousal and dominance self-report measures following each artmaking task, as well as following a baseline resting period, on a centered scale ranging from -4 to 4 are detailed in Table 1. A repeated within subjects ANOVA demonstrated a statistically significant effect for art material on valence but not on arousal or dominance (Table 1). Post hoc pairwise comparisons revealed that, on average, emotional valence was more positive following painting with gouache in comparison to emotional valence following drawing with a pencil (p = 0.038), but not in comparison to baseline valence (p = 0.744).
Baseline | Pencil | Oil Pastel | Gouache | F(3,147) | ηp2 | |
M (SD) | M (SD) | M (SD) | M (SD) | |||
Valence | 2.14 (±1.07) | 1.96 (±1.65) | 2.30 (±1.54) | 2.60 (±1.55) | 2.93* | 0.056 |
Arousal | -1.72 (±1.84) | -1.86 (±2.13) | -1.90 (±1.88) | -1.66 (±2.11) | 0.47 | 0.009 |
Dominance | -0.02 (±1.41) | 0.16 (±1.54) | 0.14 (±1.77) | 0.16 (±1.82) | 0.28 | 0.006 |
*p < 0.05 |
Table 1: Valence, arousal, and dominance measures of emotional response during rest and art-making.
For detailed results, please see: Emotional response and changes in heart rate variability following artmaking with three different art materials7.
This protocol could be easily used to examine differences in emotional response after and changes in HRV during and after a variety of activities, and do not have to be limited to artmaking. Furthermore, this protocol can be modified to examine differences in emotional and physiological response to artmaking with a wider variety of art materials as well.
Figure 1: A flow chart of the experiment, originally published in a previous publication and is printed here with permission7. Please click here to view a larger version of this figure.
Figure 2: An example of the SAM measure5. Please click here to view a larger version of this figure.
Figure 3: An example of what a text file prepared to be imported to QRSTool looks like. Please click here to view a larger version of this figure.
Figure 4: An example of the data exported by CMetX. Please click here to view a larger version of this figure.
This protocol is designed to measure differences in RSA during artmaking with art materials varying in their levels of fluidity7. The biopatch9,10 is a small round physiological monitoring telemetry device that attaches to a holster that connects to two Ag-AgCl disposable electrodes and enables the collection of physiological data, including basic ECG. The device stores and transmits vital sign data including ECG, heart rate, respiration rate, body orientation and activity. There are several critical steps in the protocol. It is very important to conduct some sort of returning to baseline activity. We chose listening to relaxing music, and let participants choose one of three types of music to ensure that indeed this music is relaxing for them. We also had the participants listen to the same music before engaging in art making with the goal of "neutralizing" any stimulation that participants may have entered the laboratory with that day. There are some disadvantages to allowing participants to choose the type of music they listen to as it could impact variability between how participants respond. However, the purpose of the music is to provide an opportunity to return to baseline and we believe that having participants choose how to return to baseline is preferred over the potential that the music would be annoying and thus missing its purpose of return to baseline.
Paying attention to ensure that the time one activity ended and the next one began is marked accurately is important. The absolute timestamps provided by all research tools should be synchronized to ensure that the ECG recordings are correctly divided according to the actual activities timing.
The SAM is a visual analogue scale measuring the valence, arousal, and dominance of emotional response administered here on paper and pencil form with 3 rows of 5 drawings of human figures, and a scale of 1-9 below each row (see Figure 2). The valence scale ranges from unhappy or sad to happy or joyful. The arousal scale ranges from calm or bored to stimulated or excited. The dominance scale ranges from submissive or "sense of being without control" to dominant or "in control". The first row is a valence scale, which has drawings that have a range of facial expressions starting with a smile and slowly transitioning to a frown. The smile indicates a very happy mood, while a frown indicates a very sad mood. There are 3 drawings in the middle, with a small smile, a neutral expression and a slight frown. The second-row measures arousal, and the human figure drawn has a large explosion like drawing in the middle of the human figure, which transitions to become smaller and smaller until the figure on the far right only has a dot in the mid-section, indicating a low level of arousal. The dominance scale at the bottom has a small figure in the center of the square that progressively gets larger, until the far-right figure emerges from the bounds of the square.
Since ECG artefacts, which may be caused by participant movements, or temporary disconnection of the biopatch, might erroneously identified as R waves, it may result in R-R (i.e., Inter-Beat-Intervals – IBI) and HRV miscalculations. In areas of data with noise (not showing an identifiable QRS wave), use QRSTool to divide the data into several long enough chunks, of 30 seconds at least. The visual interface of QRSTool enables the user to mark a certain section of data, if suspected to be noise and then crop it out, so that it is not included in the outputted data. Another advantage of dividing the data into the 30 second segments is that the metric of HRV will not be influenced by length of usable data, as longer recordings can produce higher HRV estimates.
CMetX software is a command-line based utility that calculates various metrics of HRV given a simple IBI series as an input. The following indexes are calculated: mean interbeat interval, mean heart rate, the average of the rate-transformed IBIs, standard deviation of IBIs, root mean square of differences between IBIs, mean of absolute value of consecutive IBI difference, proportion of consecutive IBI differences greater than 50 ms, Toichi Cardiac Vagal Index, Toichi cardiac sympathetic index, natural log of variance of IBI series, natural log of variance of filtered (.12-.40 Hz) IBI series, number of IBIs on which the metrics are based, which allows for loss for implementing the filter to band-limit RSA. All values are calculated for the IBIs that are retained after the filter is applied to band-limit the signal to calculate RSA. The filter results in a loss of 12 seconds of data at the beginning and 12 seconds at the end of the data segment. Further documentation and training videos on scoring ECG can be found on: https://jallen.faculty.arizona.edu/content/resources-and-downloads.
As mentioned earlier, the protocol can be modified to examine differences in emotional response and physiology to different types of behaviors. In addition, the protocol can be modified to use additional self-report measures as well. Parts of the ECG recordings from the beginning and end of sections may need to be removed if time synchronization is not optimal. The protocol is also not limited to 3 different types of activities or materials and can be expanded or restricted. Having said that, the protocol is limited to behaviors and activities that can take place in one room in a similar setting for all participants and all activities for each activity. This is because the environment may affect HRV and to ensure that the differences observed are due to the activity or behavior and not the environment.
The level of experience in art making, individuals' level of anxiety from art making, along with any other stressful experiences that may occur before the experimental session, may have an effect on individual's response. In this study excerpt, we asked participants regarding their experience in artmaking, however we did not find any difference based on artmaking experience (novice, hobby or professional). Further studies may want to take the other considerations mentioned in to account. Another suggestion would be to have open ended questions to probe individuals about the reasoning behind their emotional state.
In the future, this protocol can be used to compare response to drawing with regular art materials or digital media. Given the finding regarding oil pastels, we suggest conducting a further study to test the variability between a waterier type of paint and comparing finger painting with different types of paint brushes. The results of studies employing this protocol can be used to expand the body of knowledge regarding the effect of the use of different materials which in turn may be used to tailor art-based interventions to the specific needs of art therapy clients.
The authors have nothing to disclose.
The production of the film was supported by the Emili Sagol Creative Arts Therapies Research Center.
Disposable Ag/AgCl electrodes | Biopac | EL501 | |
Drawing paper | Stenoplast | ||
Echo gateway | Medtronic | 9600.0303 | |
Eraser | Factis | ||
Gouache paint | Giotto | ||
HB pencil | Milan | ||
Omnisense 3.9.7 | Medtronic | 9700.0269 | Computer software |
Oil pastels 12 colors | Talens | ||
Zephyr biopatch | Medtronic | 9600.041 |