In this protocol, we describe the detailed experimental procedure for the fabrication of a robust nanoscale contact between a silver nanowire network and CdS buffer layer in a CIGS thin-film solar cell.
Silver nanowire transparent electrodes have been employed as window layers for Cu(In,Ga)Se2 thin-film solar cells. Bare silver nanowire electrodes normally result in very poor cell performance. Embedding or sandwiching silver nanowires using moderately conductive transparent materials, such as indium tin oxide or zinc oxide, can improve cell performance. However, the solution-processed matrix layers can cause a significant number of interfacial defects between transparent electrodes and the CdS buffer, which can eventually result in low cell performance. This manuscript describes how to fabricate robust electrical contact between a silver nanowire electrode and the underlying CdS buffer layer in a Cu(In,Ga)Se2 solar cell, enabling high cell performance using matrix-free silver nanowire transparent electrodes. The matrix-free silver nanowire electrode fabricated by our method proves that the charge-carrier collection capability of silver nanowire electrode-based cells is as good as that of standard cells with sputtered ZnO:Al/i-ZnO as long as the silver nanowires and CdS have high-quality electrical contact. The high-quality electrical contact was achieved by depositing an additional CdS layer as thin as 10 nm onto the silver nanowire surface.
Silver nanowire (AgNW) networks have been extensively studied as an alternative to indium tin oxide (ITO) transparent conducting thin films due to their advantages over conventional transparent conducting oxides (TCOs) in terms of lower processing cost and better mechanical flexibility. Solution-processed AgNW network transparent conducting electrodes (TCEs) have thus been employed in Cu(In,Ga)Se2 (CIGS) thin-film solar cells1,2,3,4,5,6. Solution-processed AgNW TCEs are normally fabricated in the form of embedded-AgNW or sandwich-AgNW structures in a conductive matrix such as PEDOT:PSS, ITO, ZnO, etc.7,8,9,10,11 The matrix layers can enhance that the collection of the charge carriers present in the empty spaces of the AgNW network.
However, the matrix layers can generate interfacial defects between the matrix layer and underlying CdS buffer layer in CIGS thin-film solar cells12,13. The interfacial defects often cause a kink in the current density-voltage (J-V) curve, resulting in a low fill factor (FF) in the cell, which is detrimental to solar cell performance. We previously reported a method to resolve this issue by selectively depositing an additional thin CdS layer (2nd CdS layer) between the AgNWs and the CdS buffer layer14. The incorporation of an additional CdS layer enhanced the contact properties in the junction between the AgNW and CdS layers. Consequently, the carrier collection in the AgNW network was greatly improved, and the cell performance was enhanced. In this protocol, we describe the experimental procedure to fabricate robust electrical contact between the AgNW network and the CdS buffer layer using a 2nd CdS layer in a CIGS thin-film solar cell.
1. Preparation of Mo-coated glass by DC magnetron sputtering
2. CIGS absorber layer deposition by means of a three-stage coevaporation
3. Growth of the CdS buffer layer on the CIGS absorber layer using a chemical bath deposition (CBD) method
4. Fabrication of the AgNW TCE network
5. Deposition of the 2nd CdS layer
6. Characterization techniques
The layer structures of the CIGS solar cells with (a) standard ZnO:Al/i-ZnO and (b) AgNW TCE are shown in Figure 3. The surface morphology of CIGS is rough, and a nanoscale gap can form between the AgNW layer and the underlying CdS buffer layer. As highlighted in Figure 3A, the 2nd CdS layer can be selectively deposited onto the nanoscale gap to create a stable electrical contact. The detailed explanation on the formation of electrical contact and enhancement of electrical properties and device performance can be found in the reference 14. The structural analysis of AgNW and CdS junction including cross sectional SEM and TEM, and corresponding elemental mapping can also be found in the reference 14.
Figure 4 shows the cross-sectional TEM images (a) along the 2nd CdS layer deposited on the AgNW network on the CdS/CIGS structure and (b) across the 2nd CdS layer deposited on the AgNW network. The CdS/CIGS structure shows a rugged surface morphology due to the granular structure of CIGS. Hence, bare AgNWs are suspended in air, and stable electrical contact with the CdS buffer layer cannot be expected. The 2nd CdS layer is uniformly deposited on the surface of the AgNWs, and the CdS layer on the core-shell AgNW (Ag@CdS NW) structure is produced as shown in Figure 4B. Furthermore, the 2nd CdS layer fills the air gaps between the CdS buffer layer and the AgNW layer, as shown in the inset of Figure 4A, and stable electrical contact is achieved.
Figure 5 and Table 1 show the device performance of a CIGS thin-film solar cell with bare AgNW and Ag@CdS NW TCEs. Due to unstable electrical contact, the cell with bare AgNWs has poor device performance. Deposition of a 2nd CdS layer greatly enhances the cell performance, as shown in the J-V characteristics in Figure 5. The cell with the Ag@CdS NW TCE showed a greater than 50% increase in device efficiency and FF compared to the bare AgNW TCE.
Figure 1: Chemical bath deposition setup. An image of the experimental setup for chemical bath deposition of CdS on CIGS. Please click here to view a larger version of this figure.
Figure 2: An SEM image of the AgNW TCE. The SEM image shows the spin-coated AgNW TCE on the CdS/CIGS/Mo structure. Please click here to view a larger version of this figure.
Figure 3: Schematic diagram of CIGS thin-film solar cells. Layer structure of a CIGS thin-film solar cell with (A) ZnO:Al/i-ZnO TCO and (B) AgNW TCE with a 2nd CdS layer. Please click here to view a larger version of this figure.
Figure 4: Structural analysis of Ag@CdS NW. (A) Cross-sectional TEM image along a Ag@CdS NW on a CdS/CIGS structure and (B) high-resolution TEM image across a Ag@CdS NW. Please click here to view a larger version of this figure.
Figure 5: Device performance comparison. J-V characteristics of CIGS thin-film solar cells with bare AgNW and Ag@CdS NW TCEs. Please click here to view a larger version of this figure.
Cell | VOC (V) | JSC (mA/cm2) | Efficiency (%) | FF (%) |
Bare AgNW TCE | 0.60 | 29.5 | 7.9 | 44 |
Ag@CdS TCE | 0.65 | 32.3 | 14.2 | 67.2 |
Table 1: Device performance data. A summary of the device performance derived from the J-V curves.
Note that the deposition time of the 2nd CdS layer must be optimized to achieve the optimal cell performance. As the deposition time increases, the thickness of the 2nd CdS layer increases, and consequently, the electrical contact will improve. However, further deposition of the 2nd CdS layer will result in a thicker layer that reduces light absorption, and the device efficiency will decrease. We achieved the best cell performance with 10 min of deposition time for the 2nd CdS layer and determined that the cell efficiency decreased with longer deposition times.
To evaluate our method, we compared the device performance of the Ag@CdS NW-based CIGS solar cell with that of a standard CIGS solar cell with a sputtered ZnO:Al/i-ZnOl TCO, as described in Figure 3A14. The J-V characteristics were nearly equal, and the overall device performances were very similar. This result proves that our solution process method can produce a high-performance thin-film solar cell.
Various methods have been applied to enhance the electrical properties of AgNW TCE including the incorporation of conducive matrix. The method described in this protocol is simple and effective to enhance the electrical contact property between AgNWs and underlying CdS buffer layer in CIGS thin film solar cell. Due to the enhanced contact property, the solar cell performance is greatly improved. The method is designed to apply to the CdS/CIGS system but is not limited to the CdS/CIGS system. When an appropriate CBD method is created, our method can be applied to create high-quality electrical contact between AgNWs and the buffer layer in chalcogenide thin-film solar cells.
The authors have nothing to disclose.
This research was supported by the In-House Research and Development Program of the Korea Institute of Energy Research (KIER) (B9-2411) and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant NRF-2016R1D1A1B03934840).
Mo | Materion | Purity: 3N5 | Mo sputtering |
Cu | 5N Plus | Purity: 4N7 | CIGS deposition |
In | 5N Plus | Purity: 5N | CIGS deposition |
Ga | 5N Plus | Purity: 5N | CIGS deposition |
Se | 5N Plus | Purity: 5N | CIGS deposition |
Ammonium acetate | Alfa Aesar | 11599 | CdS reaction solution |
Ammonium hydroxide | Alfa Aesar | L13168 | CdS reaction solution |
Cadmium acetate dihydrate | Sigma-Aldrich | 289159 | CdS reaction solution |
Thiourea | Sigma-Aldrich | T8656 | CdS reaction solution |
Silver Nanowire | ACSMaterial | AgNW-L30 | AgNW dispersion |